Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -16,28 +16,40 @@ def cached_model_info(api, model):
|
|
16 |
|
17 |
def convert_markdown_table_to_dataframe(md_content):
|
18 |
cleaned_content = re.sub(r'\|\s*$', '', re.sub(r'^\|\s*', '', md_content, flags=re.MULTILINE), flags=re.MULTILINE)
|
19 |
-
df = pd.read_csv(StringIO(cleaned_content), sep="\|", engine='python'
|
20 |
-
df.columns =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
model_link_pattern = r'\[(.*?)\]\((.*?)\)\s*\[.*?\]\(.*?\)'
|
23 |
-
# Correctly process 'Model' column to extract URLs and model names
|
24 |
-
df['URL'] = df['Model'].apply(lambda x: re.search(model_link_pattern, x).group(2) if re.search(model_link_pattern, x) else None)
|
25 |
-
df['Model'] = df['Model'].apply(lambda x: re.sub(model_link_pattern, r'\1', x))
|
26 |
return df
|
27 |
|
28 |
def get_and_update_model_info(df):
|
29 |
api = HfApi()
|
|
|
|
|
30 |
for index, row in df.iterrows():
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
df.at[index, 'Likes'] = -1
|
37 |
-
df.at[index, 'Tags'] = ''
|
38 |
return df
|
39 |
|
40 |
def calculate_highest_combined_score(data, column):
|
|
|
|
|
|
|
41 |
scores = data[column].dropna().tolist()
|
42 |
models = data['Model'].tolist()
|
43 |
top_combinations = {r: [] for r in range(2, 7)}
|
@@ -51,8 +63,8 @@ def calculate_highest_combined_score(data, column):
|
|
51 |
|
52 |
def display_highest_combined_scores(data, score_columns):
|
53 |
for column in score_columns:
|
54 |
-
|
55 |
-
|
56 |
st.subheader(f"Top Combinations for {column}")
|
57 |
for r, combinations in top_combinations.items():
|
58 |
st.write(f"**Number of Models: {r}**")
|
@@ -60,6 +72,7 @@ def display_highest_combined_scores(data, score_columns):
|
|
60 |
st.write(f"Score: {score}, Models: {', '.join(combination)}")
|
61 |
|
62 |
|
|
|
63 |
# Function to create bar chart for a given category
|
64 |
def create_bar_chart(df, category):
|
65 |
"""Create and display a bar chart for a given category."""
|
@@ -88,16 +101,18 @@ def create_bar_chart(df, category):
|
|
88 |
def main():
|
89 |
st.title("Model Leaderboard")
|
90 |
st.markdown("Displaying top combinations of models based on scores.")
|
91 |
-
# Placeholder for actual markdown content
|
92 |
-
|
93 |
if content:
|
94 |
df = convert_markdown_table_to_dataframe(content)
|
95 |
df = get_and_update_model_info(df)
|
96 |
score_columns = ['Average', 'AGIEval', 'GPT4All', 'TruthfulQA', 'Bigbench']
|
97 |
for col in score_columns:
|
98 |
-
|
|
|
99 |
display_highest_combined_scores(df, score_columns)
|
100 |
|
|
|
101 |
# Create tabs for leaderboard and about section
|
102 |
content = create_yall()
|
103 |
tab1, tab2 = st.tabs(["๐ Leaderboard", "๐ About"])
|
|
|
16 |
|
17 |
def convert_markdown_table_to_dataframe(md_content):
|
18 |
cleaned_content = re.sub(r'\|\s*$', '', re.sub(r'^\|\s*', '', md_content, flags=re.MULTILINE), flags=re.MULTILINE)
|
19 |
+
df = pd.read_csv(StringIO(cleaned_content), sep="\|", engine='python')
|
20 |
+
df.columns = [col.strip() for col in df.columns]
|
21 |
+
|
22 |
+
# Initialize empty columns for URL and Model if not already present
|
23 |
+
if 'Model' not in df.columns:
|
24 |
+
df['Model'] = None
|
25 |
+
if 'URL' not in df.columns:
|
26 |
+
df['URL'] = None
|
27 |
+
|
28 |
+
model_link_pattern = r'\[(.*?)\]\((.*?)\)'
|
29 |
+
for index, row in df.iterrows():
|
30 |
+
match = re.search(model_link_pattern, row['Model'])
|
31 |
+
if match:
|
32 |
+
df.at[index, 'Model'] = match.group(1)
|
33 |
+
df.at[index, 'URL'] = match.group(2)
|
34 |
|
|
|
|
|
|
|
|
|
35 |
return df
|
36 |
|
37 |
def get_and_update_model_info(df):
|
38 |
api = HfApi()
|
39 |
+
df['Likes'] = -1 # Default value for Likes
|
40 |
+
df['Tags'] = '' # Default value for Tags
|
41 |
for index, row in df.iterrows():
|
42 |
+
if pd.notnull(row['Model']):
|
43 |
+
model_info = cached_model_info(api, row['Model'].strip())
|
44 |
+
if model_info:
|
45 |
+
df.at[index, 'Likes'] = model_info.likes
|
46 |
+
df.at[index, 'Tags'] = ', '.join(model_info.tags)
|
|
|
|
|
47 |
return df
|
48 |
|
49 |
def calculate_highest_combined_score(data, column):
|
50 |
+
# Ensure the column exists and has numeric data
|
51 |
+
if column not in data.columns or not pd.api.types.is_numeric_dtype(data[column]):
|
52 |
+
return column, {}
|
53 |
scores = data[column].dropna().tolist()
|
54 |
models = data['Model'].tolist()
|
55 |
top_combinations = {r: [] for r in range(2, 7)}
|
|
|
63 |
|
64 |
def display_highest_combined_scores(data, score_columns):
|
65 |
for column in score_columns:
|
66 |
+
_, top_combinations = calculate_highest_combined_score(data, column)
|
67 |
+
if top_combinations:
|
68 |
st.subheader(f"Top Combinations for {column}")
|
69 |
for r, combinations in top_combinations.items():
|
70 |
st.write(f"**Number of Models: {r}**")
|
|
|
72 |
st.write(f"Score: {score}, Models: {', '.join(combination)}")
|
73 |
|
74 |
|
75 |
+
|
76 |
# Function to create bar chart for a given category
|
77 |
def create_bar_chart(df, category):
|
78 |
"""Create and display a bar chart for a given category."""
|
|
|
101 |
def main():
|
102 |
st.title("Model Leaderboard")
|
103 |
st.markdown("Displaying top combinations of models based on scores.")
|
104 |
+
content = """Your markdown content here""" # Placeholder for actual markdown content
|
105 |
+
|
106 |
if content:
|
107 |
df = convert_markdown_table_to_dataframe(content)
|
108 |
df = get_and_update_model_info(df)
|
109 |
score_columns = ['Average', 'AGIEval', 'GPT4All', 'TruthfulQA', 'Bigbench']
|
110 |
for col in score_columns:
|
111 |
+
if col in df.columns:
|
112 |
+
df[col] = pd.to_numeric(df[col], errors='coerce')
|
113 |
display_highest_combined_scores(df, score_columns)
|
114 |
|
115 |
+
|
116 |
# Create tabs for leaderboard and about section
|
117 |
content = create_yall()
|
118 |
tab1, tab2 = st.tabs(["๐ Leaderboard", "๐ About"])
|