CultriX commited on
Commit
4bcc990
·
verified ·
1 Parent(s): bdbadad

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +85 -1
app.py CHANGED
@@ -37,6 +37,70 @@ columns = ["Model Configuration", "tinyArc", "tinyHellaswag", "tinyMMLU", "tinyT
37
  # Convert to DataFrame
38
  df_full = pd.DataFrame(data_full, columns=columns)
39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  def summary_statistics():
41
  stats = df_full.iloc[:, 1:].describe().T # Summary stats for each task
42
  stats['Std Dev'] = df_full.iloc[:, 1:].std(axis=0)
@@ -68,8 +132,28 @@ def plot_heatmap():
68
  return "performance_heatmap.png"
69
 
70
  with gr.Blocks() as demo:
71
- gr.Markdown("# Enhanced Model Performance Analysis")
72
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73
  with gr.Row():
74
  btn1 = gr.Button("Show Summary Statistics")
75
  stats_output = gr.Dataframe()
 
37
  # Convert to DataFrame
38
  df_full = pd.DataFrame(data_full, columns=columns)
39
 
40
+
41
+ def plot_average_scores():
42
+ df_full["Average Score"] = df_full.iloc[:, 1:].mean(axis=1)
43
+ df_avg_sorted = df_full.sort_values(by="Average Score", ascending=False)
44
+
45
+ plt.figure(figsize=(12, 8))
46
+ plt.barh(df_avg_sorted["Model Configuration"], df_avg_sorted["Average Score"])
47
+ plt.title("Average Performance of Models Across Tasks", fontsize=16)
48
+ plt.xlabel("Average Score", fontsize=14)
49
+ plt.ylabel("Model Configuration", fontsize=14)
50
+ plt.gca().invert_yaxis()
51
+ plt.grid(axis='x', linestyle='--', alpha=0.7)
52
+ plt.tight_layout()
53
+ plt.savefig("average_performance.png")
54
+ return "average_performance.png"
55
+
56
+ def plot_task_performance():
57
+ df_full_melted = df_full.melt(id_vars="Model Configuration", var_name="Task", value_name="Score")
58
+
59
+ plt.figure(figsize=(14, 10))
60
+ for model in df_full["Model Configuration"]:
61
+ model_data = df_full_melted[df_full_melted["Model Configuration"] == model]
62
+ plt.plot(model_data["Task"], model_data["Score"], marker="o", label=model)
63
+
64
+ plt.title("Performance of All Models Across Tasks", fontsize=16)
65
+ plt.xlabel("Task", fontsize=14)
66
+ plt.ylabel("Score", fontsize=14)
67
+ plt.xticks(rotation=45)
68
+ plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left', fontsize=9)
69
+ plt.grid(axis='y', linestyle='--', alpha=0.7)
70
+ plt.tight_layout()
71
+ plt.savefig("task_performance.png")
72
+ return "task_performance.png"
73
+
74
+ def plot_task_specific_top_models():
75
+ top_models = df_full.iloc[:, :-1].set_index("Model Configuration").idxmax()
76
+ top_scores = df_full.iloc[:, :-1].set_index("Model Configuration").max()
77
+
78
+ results = pd.DataFrame({"Top Model": top_models, "Score": top_scores}).reset_index().rename(columns={"index": "Task"})
79
+
80
+ plt.figure(figsize=(12, 6))
81
+ plt.bar(results["Task"], results["Score"])
82
+ plt.title("Task-Specific Top Models", fontsize=16)
83
+ plt.xlabel("Task", fontsize=14)
84
+ plt.ylabel("Score", fontsize=14)
85
+ plt.grid(axis="y", linestyle="--", alpha=0.7)
86
+ plt.tight_layout()
87
+ plt.savefig("task_specific_top_models.png")
88
+ return "task_specific_top_models.png"
89
+
90
+ def top_3_models_per_task():
91
+ top_3_data = {
92
+ task: df_full.nlargest(3, task)[["Model Configuration", task]].values.tolist()
93
+ for task in df_full.columns[1:-1]
94
+ }
95
+ top_3_results = pd.DataFrame({
96
+ task: {
97
+ "Top 3 Models": [entry[0] for entry in top_3_data[task]],
98
+ "Scores": [entry[1] for entry in top_3_data[task]],
99
+ }
100
+ for task in top_3_data
101
+ }).T.rename_axis("Task").reset_index()
102
+ return top_3_results
103
+
104
  def summary_statistics():
105
  stats = df_full.iloc[:, 1:].describe().T # Summary stats for each task
106
  stats['Std Dev'] = df_full.iloc[:, 1:].std(axis=0)
 
132
  return "performance_heatmap.png"
133
 
134
  with gr.Blocks() as demo:
135
+ gr.Markdown("# Model Performance Analysis")
136
 
137
+ with gr.Row():
138
+ btn1 = gr.Button("Show Average Performance")
139
+ img1 = gr.Image(type="filepath")
140
+ btn1.click(plot_average_scores, outputs=img1)
141
+
142
+ with gr.Row():
143
+ btn2 = gr.Button("Show Task Performance")
144
+ img2 = gr.Image(type="filepath")
145
+ btn2.click(plot_task_performance, outputs=img2)
146
+
147
+ with gr.Row():
148
+ btn3 = gr.Button("Task-Specific Top Models")
149
+ img3 = gr.Image(type="filepath")
150
+ btn3.click(plot_task_specific_top_models, outputs=img3)
151
+
152
+ with gr.Row():
153
+ btn4 = gr.Button("Top 3 Models Per Task")
154
+ output4 = gr.Dataframe()
155
+ btn4.click(top_3_models_per_task, outputs=output4)
156
+
157
  with gr.Row():
158
  btn1 = gr.Button("Show Summary Statistics")
159
  stats_output = gr.Dataframe()