#!/usr/bin/env python
# encoding: utf-8
import spaces
import gradio as gr
from PIL import Image
import traceback
import re
import torch
import argparse
from transformers import AutoModel, AutoTokenizer
import os
from huggingface_hub import login
# Load the API token from the environment variables
api_token = os.getenv('HUGGINGFACE_API_TOKEN')
if not api_token:
raise ValueError("No Hugging Face API token found. Please set the HUGGING_FACE_API_TOKEN environment variable.")
# Login to Hugging Face Hub
login(token=api_token, add_to_git_credential=True)
# For Nvidia GPUs.
# python web_demo_2.5.py --device cuda
# Argparser
parser = argparse.ArgumentParser(description='demo')
parser.add_argument('--device', type=str, default='cuda')
args = parser.parse_args()
device = args.device
assert device in ['cuda']
# Load model
model_path = 'openbmb/MiniCPM-Llama3-V-2_5'
model = AutoModel.from_pretrained(model_path, trust_remote_code=True).to(dtype=torch.float16)
model = model.to(device=device)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model.eval()
ERROR_MSG = "Error, please retry"
model_name = 'MiniCPM-Llama3-V 2.5'
form_radio = {
'choices': ['Beam Search', 'Sampling'],
#'value': 'Beam Search',
'value': 'Sampling',
'interactive': True,
'label': 'Decode Type'
}
# Beam Form
num_beams_slider = {
'minimum': 0,
'maximum': 5,
'value': 3,
'step': 1,
'interactive': True,
'label': 'Num Beams'
}
repetition_penalty_slider = {
'minimum': 0,
'maximum': 3,
'value': 1.2,
'step': 0.01,
'interactive': True,
'label': 'Repetition Penalty'
}
repetition_penalty_slider2 = {
'minimum': 0,
'maximum': 3,
'value': 1.05,
'step': 0.01,
'interactive': True,
'label': 'Repetition Penalty'
}
max_new_tokens_slider = {
'minimum': 1,
'maximum': 4096,
'value': 1024,
'step': 1,
'interactive': True,
'label': 'Max New Tokens'
}
top_p_slider = {
'minimum': 0,
'maximum': 1,
'value': 0.8,
'step': 0.05,
'interactive': True,
'label': 'Top P'
}
top_k_slider = {
'minimum': 0,
'maximum': 200,
'value': 100,
'step': 1,
'interactive': True,
'label': 'Top K'
}
temperature_slider = {
'minimum': 0,
'maximum': 2,
'value': 0.7,
'step': 0.05,
'interactive': True,
'label': 'Temperature'
}
def create_component(params, comp='Slider'):
if comp == 'Slider':
return gr.Slider(
minimum=params['minimum'],
maximum=params['maximum'],
value=params['value'],
step=params['step'],
interactive=params['interactive'],
label=params['label']
)
elif comp == 'Radio':
return gr.Radio(
choices=params['choices'],
value=params['value'],
interactive=params['interactive'],
label=params['label']
)
elif comp == 'Button':
return gr.Button(
value=params['value'],
interactive=True
)
@spaces.GPU(duration=20)
def chat(img, msgs, ctx, params=None, vision_hidden_states=None):
default_params = {"stream": False, "sampling": False, "num_beams":3, "repetition_penalty": 1.2, "max_new_tokens": 1024}
if params is None:
params = default_params
if img is None:
yield "Error, invalid image, please upload a new image"
else:
try:
image = img.convert('RGB')
answer = model.chat(
image=image,
msgs=msgs,
tokenizer=tokenizer,
**params
)
# if params['stream'] is False:
# res = re.sub(r'(.*)', '', answer)
# res = res.replace('[', '')
# res = res.replace(']', '')
# res = res.replace('', '')
# answer = res.replace('', '')
# else:
for char in answer:
yield char
except Exception as err:
print(err)
traceback.print_exc()
yield ERROR_MSG
def upload_img(image, _chatbot, _app_session):
image = Image.fromarray(image)
_app_session['sts']=None
_app_session['ctx']=[]
_app_session['img']=image
_chatbot.append(('', 'Image uploaded successfully, you can talk to me now'))
return _chatbot, _app_session
def respond(_chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature):
_question = _chat_bot[-1][0]
print(':', _question)
if _app_cfg.get('ctx', None) is None:
_chat_bot[-1][1] = 'Please upload an image to start'
yield (_chat_bot, _app_cfg)
else:
_context = _app_cfg['ctx'].copy()
if _context:
_context.append({"role": "user", "content": _question})
else:
_context = [{"role": "user", "content": _question}]
if params_form == 'Beam Search':
params = {
'sampling': False,
'stream': False,
'num_beams': num_beams,
'repetition_penalty': repetition_penalty,
"max_new_tokens": 896
}
else:
params = {
'sampling': True,
'stream': True,
'top_p': top_p,
'top_k': top_k,
'temperature': temperature,
'repetition_penalty': repetition_penalty_2,
"max_new_tokens": 896
}
gen = chat(_app_cfg['img'], _context, None, params)
_chat_bot[-1][1] = ""
for _char in gen:
_chat_bot[-1][1] += _char
_context[-1]["content"] += _char
yield (_chat_bot, _app_cfg)
def request(_question, _chat_bot, _app_cfg):
_chat_bot.append((_question, None))
return '', _chat_bot, _app_cfg
def regenerate_button_clicked(_question, _chat_bot, _app_cfg):
if len(_chat_bot) <= 1:
_chat_bot.append(('Regenerate', 'No question for regeneration.'))
return '', _chat_bot, _app_cfg
elif _chat_bot[-1][0] == 'Regenerate':
return '', _chat_bot, _app_cfg
else:
_question = _chat_bot[-1][0]
_chat_bot = _chat_bot[:-1]
_app_cfg['ctx'] = _app_cfg['ctx'][:-2]
return request(_question, _chat_bot, _app_cfg)
# return respond(_chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature)
def clear_button_clicked(_question, _chat_bot, _app_cfg, _bt_pic):
_chat_bot.clear()
_app_cfg['sts'] = None
_app_cfg['ctx'] = None
_app_cfg['img'] = None
_bt_pic = None
return '', _chat_bot, _app_cfg, _bt_pic
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1, min_width=300):
params_form = create_component(form_radio, comp='Radio')
with gr.Accordion("Beam Search") as beams_according:
num_beams = create_component(num_beams_slider)
repetition_penalty = create_component(repetition_penalty_slider)
with gr.Accordion("Sampling") as sampling_according:
top_p = create_component(top_p_slider)
top_k = create_component(top_k_slider)
temperature = create_component(temperature_slider)
repetition_penalty_2 = create_component(repetition_penalty_slider2)
regenerate = create_component({'value': 'Regenerate'}, comp='Button')
clear = create_component({'value': 'Clear'}, comp='Button')
with gr.Column(scale=3, min_width=500):
app_session = gr.State({'sts':None,'ctx':None,'img':None})
bt_pic = gr.Image(label="Upload an image to start")
chat_bot = gr.Chatbot(label=f"Chat with {model_name}")
txt_message = gr.Textbox(label="Input text")
clear.click(
clear_button_clicked,
[txt_message, chat_bot, app_session, bt_pic],
[txt_message, chat_bot, app_session, bt_pic],
queue=False
)
txt_message.submit(
request,
#[txt_message, chat_bot, app_session, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature],
[txt_message, chat_bot, app_session],
[txt_message, chat_bot, app_session],
queue=False
).then(
respond,
[chat_bot, app_session, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature],
[chat_bot, app_session]
)
regenerate.click(
regenerate_button_clicked,
[txt_message, chat_bot, app_session],
[txt_message, chat_bot, app_session],
queue=False
).then(
respond,
[chat_bot, app_session, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature],
[chat_bot, app_session]
)
bt_pic.upload(lambda: None, None, chat_bot, queue=False).then(upload_img, inputs=[bt_pic,chat_bot,app_session], outputs=[chat_bot,app_session])
demo.queue()
demo.launch()