#!/usr/bin/env python # encoding: utf-8 import spaces import gradio as gr from PIL import Image import traceback import re import torch import argparse from transformers import AutoModel, AutoTokenizer import os from huggingface_hub import login # Load the API token from the environment variables api_token = os.getenv('HUGGINGFACE_API_TOKEN') if not api_token: raise ValueError("No Hugging Face API token found. Please set the HUGGING_FACE_API_TOKEN environment variable.") # Login to Hugging Face Hub login(token=api_token, add_to_git_credential=True) # For Nvidia GPUs. # python web_demo_2.5.py --device cuda # Argparser parser = argparse.ArgumentParser(description='demo') parser.add_argument('--device', type=str, default='cuda') args = parser.parse_args() device = args.device assert device in ['cuda'] # Load model model_path = 'openbmb/MiniCPM-Llama3-V-2_5' model = AutoModel.from_pretrained(model_path, trust_remote_code=True).to(dtype=torch.float16) model = model.to(device=device) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model.eval() ERROR_MSG = "Error, please retry" model_name = 'MiniCPM-Llama3-V 2.5' form_radio = { 'choices': ['Beam Search', 'Sampling'], #'value': 'Beam Search', 'value': 'Sampling', 'interactive': True, 'label': 'Decode Type' } # Beam Form num_beams_slider = { 'minimum': 0, 'maximum': 5, 'value': 3, 'step': 1, 'interactive': True, 'label': 'Num Beams' } repetition_penalty_slider = { 'minimum': 0, 'maximum': 3, 'value': 1.2, 'step': 0.01, 'interactive': True, 'label': 'Repetition Penalty' } repetition_penalty_slider2 = { 'minimum': 0, 'maximum': 3, 'value': 1.05, 'step': 0.01, 'interactive': True, 'label': 'Repetition Penalty' } max_new_tokens_slider = { 'minimum': 1, 'maximum': 4096, 'value': 1024, 'step': 1, 'interactive': True, 'label': 'Max New Tokens' } top_p_slider = { 'minimum': 0, 'maximum': 1, 'value': 0.8, 'step': 0.05, 'interactive': True, 'label': 'Top P' } top_k_slider = { 'minimum': 0, 'maximum': 200, 'value': 100, 'step': 1, 'interactive': True, 'label': 'Top K' } temperature_slider = { 'minimum': 0, 'maximum': 2, 'value': 0.7, 'step': 0.05, 'interactive': True, 'label': 'Temperature' } def create_component(params, comp='Slider'): if comp == 'Slider': return gr.Slider( minimum=params['minimum'], maximum=params['maximum'], value=params['value'], step=params['step'], interactive=params['interactive'], label=params['label'] ) elif comp == 'Radio': return gr.Radio( choices=params['choices'], value=params['value'], interactive=params['interactive'], label=params['label'] ) elif comp == 'Button': return gr.Button( value=params['value'], interactive=True ) @spaces.GPU(duration=20) def chat(img, msgs, ctx, params=None, vision_hidden_states=None): default_params = {"stream": False, "sampling": False, "num_beams":3, "repetition_penalty": 1.2, "max_new_tokens": 1024} if params is None: params = default_params if img is None: yield "Error, invalid image, please upload a new image" else: try: image = img.convert('RGB') answer = model.chat( image=image, msgs=msgs, tokenizer=tokenizer, **params ) # if params['stream'] is False: # res = re.sub(r'(.*)', '', answer) # res = res.replace('', '') # res = res.replace('', '') # res = res.replace('', '') # answer = res.replace('', '') # else: for char in answer: yield char except Exception as err: print(err) traceback.print_exc() yield ERROR_MSG def upload_img(image, _chatbot, _app_session): image = Image.fromarray(image) _app_session['sts']=None _app_session['ctx']=[] _app_session['img']=image _chatbot.append(('', 'Image uploaded successfully, you can talk to me now')) return _chatbot, _app_session def respond(_chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature): _question = _chat_bot[-1][0] print(':', _question) if _app_cfg.get('ctx', None) is None: _chat_bot[-1][1] = 'Please upload an image to start' yield (_chat_bot, _app_cfg) else: _context = _app_cfg['ctx'].copy() if _context: _context.append({"role": "user", "content": _question}) else: _context = [{"role": "user", "content": _question}] if params_form == 'Beam Search': params = { 'sampling': False, 'stream': False, 'num_beams': num_beams, 'repetition_penalty': repetition_penalty, "max_new_tokens": 896 } else: params = { 'sampling': True, 'stream': True, 'top_p': top_p, 'top_k': top_k, 'temperature': temperature, 'repetition_penalty': repetition_penalty_2, "max_new_tokens": 896 } gen = chat(_app_cfg['img'], _context, None, params) _chat_bot[-1][1] = "" for _char in gen: _chat_bot[-1][1] += _char _context[-1]["content"] += _char yield (_chat_bot, _app_cfg) def request(_question, _chat_bot, _app_cfg): _chat_bot.append((_question, None)) return '', _chat_bot, _app_cfg def regenerate_button_clicked(_question, _chat_bot, _app_cfg): if len(_chat_bot) <= 1: _chat_bot.append(('Regenerate', 'No question for regeneration.')) return '', _chat_bot, _app_cfg elif _chat_bot[-1][0] == 'Regenerate': return '', _chat_bot, _app_cfg else: _question = _chat_bot[-1][0] _chat_bot = _chat_bot[:-1] _app_cfg['ctx'] = _app_cfg['ctx'][:-2] return request(_question, _chat_bot, _app_cfg) # return respond(_chat_bot, _app_cfg, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature) def clear_button_clicked(_question, _chat_bot, _app_cfg, _bt_pic): _chat_bot.clear() _app_cfg['sts'] = None _app_cfg['ctx'] = None _app_cfg['img'] = None _bt_pic = None return '', _chat_bot, _app_cfg, _bt_pic with gr.Blocks() as demo: with gr.Row(): with gr.Column(scale=1, min_width=300): params_form = create_component(form_radio, comp='Radio') with gr.Accordion("Beam Search") as beams_according: num_beams = create_component(num_beams_slider) repetition_penalty = create_component(repetition_penalty_slider) with gr.Accordion("Sampling") as sampling_according: top_p = create_component(top_p_slider) top_k = create_component(top_k_slider) temperature = create_component(temperature_slider) repetition_penalty_2 = create_component(repetition_penalty_slider2) regenerate = create_component({'value': 'Regenerate'}, comp='Button') clear = create_component({'value': 'Clear'}, comp='Button') with gr.Column(scale=3, min_width=500): app_session = gr.State({'sts':None,'ctx':None,'img':None}) bt_pic = gr.Image(label="Upload an image to start") chat_bot = gr.Chatbot(label=f"Chat with {model_name}") txt_message = gr.Textbox(label="Input text") clear.click( clear_button_clicked, [txt_message, chat_bot, app_session, bt_pic], [txt_message, chat_bot, app_session, bt_pic], queue=False ) txt_message.submit( request, #[txt_message, chat_bot, app_session, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature], [txt_message, chat_bot, app_session], [txt_message, chat_bot, app_session], queue=False ).then( respond, [chat_bot, app_session, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature], [chat_bot, app_session] ) regenerate.click( regenerate_button_clicked, [txt_message, chat_bot, app_session], [txt_message, chat_bot, app_session], queue=False ).then( respond, [chat_bot, app_session, params_form, num_beams, repetition_penalty, repetition_penalty_2, top_p, top_k, temperature], [chat_bot, app_session] ) bt_pic.upload(lambda: None, None, chat_bot, queue=False).then(upload_img, inputs=[bt_pic,chat_bot,app_session], outputs=[chat_bot,app_session]) demo.queue() demo.launch()