File size: 11,306 Bytes
b2077e8 31fc9dd b2077e8 1a9b170 b2077e8 b577655 b2077e8 b577655 b2077e8 b577655 b2077e8 b577655 b2077e8 64eaae5 b2077e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
import os
import subprocess
import sys
# 1. Instalasi Dependencies (Pastikan ini dijalankan hanya jika diperlukan)
# Cek apakah dependencies sudah terinstall
def check_dependencies():
try:
import torch
import transformers
import datasets
import librosa
import numpy
import scipy
import ffmpeg
import gradio
import huggingface_hub
return True
except ImportError:
return False
if not check_dependencies():
# Install pytorch (CPU version)
subprocess.check_call([sys.executable, "-m", "pip", "install", "torch==1.12.1+cpu", "torchvision==0.13.1+cpu", "torchaudio==0.12.1", "--extra-index-url", "https://download.pytorch.org/whl/cpu"])
# Install other dependencies
subprocess.check_call([sys.executable, "-m", "pip", "install", "transformers==4.24.0", "datasets==2.7.1", "librosa==0.9.2", "numpy==1.23.4", "scipy==1.9.3", "ffmpeg-python==0.2.0", "gradio==3.10.1", "huggingface_hub==0.11.0"])
# Install non-pip dependencies
os.system("apt-get update && apt-get install -y ffmpeg")
# 2. Impor Libraries
import torch
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset, Audio
import librosa
import numpy as np
from scipy.io import wavfile
import ffmpeg
import gradio as gr
from huggingface_hub import HfApi, HfFolder
from huggingface_hub import login
# 3. Konfigurasi Hugging Face Hub
# Dapatkan token dari environment variable (lebih aman)
HF_TOKEN = os.environ.get("HF_TOKEN") # Gunakan secrets HF_TOKEN pada pengaturan HF Spaces
# Atau, jika Anda ingin hardcode token (tidak disarankan untuk production)
# HF_TOKEN = "YOUR_HUGGINGFACE_TOKEN"
# Konfigurasi repository
repo_id = "Cun-Duck/Lipsync" # Ganti dengan username dan nama repo Anda
model_filename = "lipsync_model.pth"
HF_TOKEN = os.environ.get("HF_TOKEN") # Gunakan secrets HF_TOKEN pada pengaturan HF Spaces
# Login ke Hugging Face Hub
if HF_TOKEN:
login(token=HF_TOKEN)
print("Successfully logged in to Hugging Face Hub.")
else:
print("HF_TOKEN not found. Model will not be uploaded.")
# Inisialisasi HfApi
api = HfApi()
# 4. Definisi Model dan Fungsi-Fungsi
# Model ASR (sama seperti sebelumnya)
asr_model_name = "facebook/wav2vec2-base-960h"
asr_model = Wav2Vec2ForCTC.from_pretrained(asr_model_name)
asr_processor = Wav2Vec2Processor.from_pretrained(asr_model_name)
# Placeholder untuk model lipsync (Model yang lebih ringan dan efisien)
class LipSyncModel(torch.nn.Module):
def __init__(self):
super().__init__()
# Arsitektur yang lebih sederhana:
self.fc1 = torch.nn.Linear(512, 256) # Reduced input features
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(256, 128 * 3 * 32 * 32) # Reduced output size
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = x.view(-1, 3, 32, 32) # Reduced frame size: 32x32
return x
lipsync_model = LipSyncModel()
optimizer = torch.optim.Adam(lipsync_model.parameters(), lr=5e-5)
criterion = torch.nn.MSELoss()
# Fungsi untuk mengekstrak fitur audio (sama seperti sebelumnya)
def extract_audio_features(audio_file):
audio, sr = librosa.load(audio_file, sr=asr_processor.feature_extractor.sampling_rate, mono=True) # Ensure mono audio
inputs = asr_processor(audio, sampling_rate=sr, return_tensors="pt", padding=True)
with torch.no_grad():
# Get hidden states from a specific layer (before the output layer)
# Note: Wav2Vec2 might not provide hidden features directly.
# You may need to modify the model to obtain the desired features.
# Alternatively, use MFCCs:
mfccs = librosa.feature.mfcc(y=audio, sr=sr, n_mfcc=16, hop_length=512)
mfccs = torch.tensor(mfccs.T).float()[:512, :] # Limit feature size, adjust as needed
return mfccs
# Fungsi untuk memproses video dan audio (sama seperti sebelumnya)
def process_video(video_file, audio_file):
# 1. Ekstrak audio dari video (jika video memiliki audio)
if audio_file is None:
try:
audio_file = "temp_audio.wav"
(
ffmpeg.input(video_file)
.output(audio_file, acodec="pcm_s16le", ar="16000", ac=1) # Convert to mono
.run(overwrite_output=True, quiet=True)
)
except ffmpeg.Error as e:
print(f"Error extracting audio from {video_file}: {e.stderr.decode()}")
return None, None
# 2. Ekstrak frame dari video
probe = ffmpeg.probe(video_file)
video_info = next(s for s in probe['streams'] if s['codec_type'] == 'video')
width = int(video_info['width'])
height = int(video_info['height'])
num_frames = int(video_info['nb_frames'])
fps = eval(video_info['r_frame_rate'])
frames, _, _ = (
ffmpeg.input(video_file)
.output("pipe:", format="rawvideo", pix_fmt="rgb24", s="32x32") # Downsample to 32x32
.run(capture_stdout=True, quiet=True)
)
frames = np.frombuffer(frames, np.uint8).reshape([-1, 32, 32, 3])
frames = torch.tensor(frames).permute(0, 3, 1, 2).float() / 255.0
# 3. Ekstrak fitur audio
audio_features = extract_audio_features(audio_file)
return frames, audio_features, fps
# Fungsi untuk melatih model lipsync
def train_lipsync_model(video_file, audio_file, epochs=5):
frames, audio_features, fps = process_video(video_file, audio_file)
if frames is None or audio_features is None:
print("Skipping training due to error in video or audio processing.")
return
for epoch in range(epochs):
optimizer.zero_grad()
# Sesuaikan ukuran audio features
num_frames = frames.shape[0]
# Reduce the number of frames to match the audio features, if necessary
if num_frames > audio_features.shape[0]:
frames = frames[:audio_features.shape[0]]
num_frames = audio_features.shape[0]
# Pad audio features if they are shorter than the number of frames
if audio_features.shape[0] < num_frames:
padding_size = num_frames - audio_features.shape[0]
padding = audio_features[-1,:].repeat(padding_size, 1)
audio_features_padded = torch.cat((audio_features, padding), dim=0)
else:
audio_features_padded = audio_features
# Generate video frame
generated_frames = lipsync_model(audio_features_padded)
# Hitung loss
loss = criterion(generated_frames, frames)
# Backpropagation dan optimasi
loss.backward()
optimizer.step()
print(f"Epoch {epoch+1}/{epochs}, Loss: {loss.item():.4f}")
# Simpan dan upload model setelah pelatihan
if HF_TOKEN:
save_and_upload_model()
# Fungsi untuk inference (sama seperti sebelumnya)
def lipsync_inference(video_file, audio_file, output_file="output.mp4"):
frames, audio_features, fps = process_video(video_file, audio_file)
if frames is None or audio_features is None:
print("Error during video or audio processing.")
return None
with torch.no_grad():
num_frames = frames.shape[0]
# Reduce the number of frames to match the audio features, if necessary
if num_frames > audio_features.shape[0]:
frames = frames[:audio_features.shape[0]]
num_frames = audio_features.shape[0]
# Pad audio features if they are shorter than the number of frames
if audio_features.shape[0] < num_frames:
padding_size = num_frames - audio_features.shape[0]
padding = audio_features[-1,:].repeat(padding_size, 1)
audio_features_padded = torch.cat((audio_features, padding), dim=0)
else:
audio_features_padded = audio_features
generated_frames = lipsync_model(audio_features_padded)
# Convert tensor to numpy array
generated_frames = (generated_frames * 255).byte().permute(0, 2, 3, 1).cpu().numpy()
# Simpan video hasil inference
temp_video = "temp_output.mp4"
(
ffmpeg.input(
"pipe:",
format="rawvideo",
pix_fmt="rgb24",
s=f"{generated_frames.shape[2]}x{generated_frames.shape[1]}",
r=fps,
)
.output(temp_video, pix_fmt="yuv420p", vcodec="libx264", crf=28)
.overwrite_output()
.run(input=generated_frames.tobytes(), quiet=True)
)
# Gabungkan audio baru dengan video
(
ffmpeg.input(temp_video)
.input(audio_file)
.output(output_file, c="copy", map="0:v:0 1:a:0")
.overwrite_output()
.run(quiet=True)
)
os.remove(temp_video)
print(f"Video hasil lipsync disimpan di: {output_file}")
return output_file
# 5. Fungsi untuk menyimpan dan mengupload model
def save_and_upload_model():
# Create repo if it doesn't exist
try:
api.create_repo(repo_id=repo_id, token=HF_TOKEN, private=True, exist_ok=True) # repo dibuat private agar lebih aman
except Exception as e:
print(f"Error creating repo: {e}")
# Simpan model secara lokal
torch.save(lipsync_model.state_dict(), model_filename)
print(f"Model saved locally to {model_filename}")
# Upload model ke Hugging Face Hub
try:
api.upload_file(
path_or_fileobj=model_filename,
path_in_repo=model_filename,
repo_id=repo_id,
token=HF_TOKEN,
)
print(f"Model uploaded to {repo_id}/{model_filename}")
except Exception as e:
print(f"Error uploading model: {e}")
# 6. Fungsi untuk mengunduh dan memuat model
def download_and_load_model():
try:
model_path = api.model_info(repo_id=repo_id, token=HF_TOKEN).siblings[0].rfilename
api.download_file(
path_or_fileobj=model_filename,
path_in_repo=model_path,
repo_id=repo_id,
token=HF_TOKEN,
local_dir="."
)
lipsync_model.load_state_dict(torch.load(model_filename))
print("Model loaded from Hugging Face Hub")
except Exception as e:
print(f"Error loading model: {e}")
print("Starting with a fresh model.")
# 7. Antarmuka Gradio
def run_app(input_video, input_audio, output_video):
# Coba untuk load model dari HF Hub
if HF_TOKEN:
download_and_load_model()
# save files to path
input_video_path = "input_video.mp4"
input_audio_path = "input_audio.wav"
with open(input_video_path, "wb") as f:
f.write(input_video.getbuffer())
with open(input_audio_path, "wb") as f:
f.write(input_audio.getbuffer())
# Lakukan pelatihan selama 5 epoch
train_lipsync_model(input_video_path, input_audio_path, epochs=5)
output_video = lipsync_inference(input_video_path, input_audio_path, output_video)
# remove files from path
os.remove(input_video_path)
os.remove(input_audio_path)
return output_video
input_video = gr.inputs.Video(type="file", label="Input Video")
input_audio = gr.inputs.Audio(type="file", label="Input Audio")
output_video = "output_video.mp4"
iface = gr.Interface(
fn=run_app,
inputs=[input_video, input_audio],
outputs="video",
title="LipSync AI on CPU",
description="Ubah audio dari video menggunakan AI Lipsync (CPU Version).",
)
iface.launch(debug=True) |