qqwjq1981 commited on
Commit
6eefc6b
·
verified ·
1 Parent(s): 6e6d9f1

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -42
app.py CHANGED
@@ -824,56 +824,57 @@ def project_extraction(project_description):
824
  # task_analysis, reasoning_path = generate_reasoning_path(project_description, task_description)
825
 
826
  # steps = store_and_execute_task(task_description, reasoning_path)
827
- def message_back(task_message, execution_status, doc_url, from_whatsapp):
828
- # Convert task steps to a simple numbered list
829
- task_steps_list = "\n".join(
830
- [f"{i + 1}. {step['action']} - {step.get('output', '')}" for i, step in enumerate(execution_status.to_dict(orient="records"))]
831
- )
832
 
833
- # Format the body message
834
- body_message = (
835
- f"*Task Message:*\n{task_message}\n\n"
836
- f"*Execution Status:*\n{task_steps_list}\n\n"
837
- f"*Doc URL:*\n{doc_url}\n\n"
838
- )
839
 
840
- # Send response back to WhatsApp
841
- try:
842
- twillo_client.messages.create(
843
- from_=twilio_phone_number,
844
- to=from_whatsapp,
845
- body=body_message
846
- )
847
- except Exception as e:
848
- logger.error(f"Twilio Error: {e}")
849
- raise HTTPException(status_code=500, detail=f"Error sending WhatsApp message: {str(e)}")
850
 
851
- return {"status": "success"}
 
 
 
 
 
 
 
 
 
852
 
853
- # Initialize the Whisper pipeline
854
- whisper_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-medium")
855
 
856
- # Function to transcribe audio from a media URL
857
- def transcribe_audio_from_media_url(media_url):
858
- try:
859
- media_response = requests.get(media_url, auth=HTTPBasicAuth(account_sid, auth_token))
860
- # Download the media file
861
- media_response.raise_for_status()
862
- audio_data = media_response.content
863
 
864
- # Save the audio data to a file for processing
865
- audio_file_path = "temp_audio_file.mp3"
866
- with open(audio_file_path, "wb") as audio_file:
867
- audio_file.write(audio_data)
 
 
 
868
 
869
- # Transcribe the audio using Whisper
870
- transcription = whisper_pipeline(audio_file_path, return_timestamps=True)
871
- logger.debug(f"Transcription: {transcription['text']}")
872
- return transcription["text"]
873
 
874
- except Exception as e:
875
- logger.error(f"An error occurred: {e}")
876
- return None
 
 
 
 
 
877
 
878
 
879
  # In[18]:
 
824
  # task_analysis, reasoning_path = generate_reasoning_path(project_description, task_description)
825
 
826
  # steps = store_and_execute_task(task_description, reasoning_path)
 
 
 
 
 
827
 
828
+ # def message_back(task_message, execution_status, doc_url, from_whatsapp):
829
+ # # Convert task steps to a simple numbered list
830
+ # task_steps_list = "\n".join(
831
+ # [f"{i + 1}. {step['action']} - {step.get('output', '')}" for i, step in enumerate(execution_status.to_dict(orient="records"))]
832
+ # )
 
833
 
834
+ # # Format the body message
835
+ # body_message = (
836
+ # f"*Task Message:*\n{task_message}\n\n"
837
+ # f"*Execution Status:*\n{task_steps_list}\n\n"
838
+ # f"*Doc URL:*\n{doc_url}\n\n"
839
+ # )
 
 
 
 
840
 
841
+ # # Send response back to WhatsApp
842
+ # try:
843
+ # twillo_client.messages.create(
844
+ # from_=twilio_phone_number,
845
+ # to=from_whatsapp,
846
+ # body=body_message
847
+ # )
848
+ # except Exception as e:
849
+ # logger.error(f"Twilio Error: {e}")
850
+ # raise HTTPException(status_code=500, detail=f"Error sending WhatsApp message: {str(e)}")
851
 
852
+ # return {"status": "success"}
 
853
 
854
+ # # Initialize the Whisper pipeline
855
+ # whisper_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-medium")
 
 
 
 
 
856
 
857
+ # # Function to transcribe audio from a media URL
858
+ # def transcribe_audio_from_media_url(media_url):
859
+ # try:
860
+ # media_response = requests.get(media_url, auth=HTTPBasicAuth(account_sid, auth_token))
861
+ # # Download the media file
862
+ # media_response.raise_for_status()
863
+ # audio_data = media_response.content
864
 
865
+ # # Save the audio data to a file for processing
866
+ # audio_file_path = "temp_audio_file.mp3"
867
+ # with open(audio_file_path, "wb") as audio_file:
868
+ # audio_file.write(audio_data)
869
 
870
+ # # Transcribe the audio using Whisper
871
+ # transcription = whisper_pipeline(audio_file_path, return_timestamps=True)
872
+ # logger.debug(f"Transcription: {transcription['text']}")
873
+ # return transcription["text"]
874
+
875
+ # except Exception as e:
876
+ # logger.error(f"An error occurred: {e}")
877
+ # return None
878
 
879
 
880
  # In[18]: