File size: 849 Bytes
1f79e6d
102e098
1f79e6d
 
29303e8
 
936b334
102e098
5142437
102e098
 
 
 
 
1f79e6d
102e098
 
 
ff2952d
102e098
 
1f79e6d
102e098
 
 
 
 
936b334
102e098
6d3cd11
102e098
 
 
 
936b334
073666c
6250028
102e098
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

import openai
import gradio as gr



#OpenAi call
def gpt3(texts):
    openai.api_key = "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"

    response = openai.Completion.create(
      engine="code-davinci-002",
      prompt= texts,
          temperature=0,
          max_tokens=750,
          top_p=1,
          frequency_penalty=0.0,
          presence_penalty=0.0,
          stop = (";", "/*", "</code>")
    )
    x = response.choices[0].text 
    
    return x




# Function to elicit sql response from model
def greet( prompt):
    txt= (f'''/*Prompt: {prompt}*/ \n --SQL Code:''')
    sql = gpt3(txt)
    return sql


#Code to set up Gradio UI
iface = gr.Interface(greet, inputs = ["text"], outputs = "text",title="Natural Language to SQL", description="Enter any natural language prompt and get a SQL statement back")
iface.launch()