Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
# Initialize a retriever using Qdrant and SentenceTransformer embeddings
|
2 |
from langchain_community.vectorstores import Qdrant
|
3 |
-
from langchain_community.retrievers.qdrant_sparse_vector_retriever import QdrantSparseVectorRetriever
|
4 |
from langchain_community.embeddings import SentenceTransformerEmbeddings
|
|
|
5 |
from qdrant_client import QdrantClient
|
6 |
import pandas as pd
|
7 |
-
import gradio as
|
8 |
|
9 |
|
10 |
embeddings = SentenceTransformerEmbeddings(model_name='sentence-transformers/clip-ViT-B-32')
|
@@ -13,20 +13,23 @@ def get_results(search_results):
|
|
13 |
filtered_img_ids = [doc.metadata.get("image_id") for doc in search_results]
|
14 |
return filtered_img_ids
|
15 |
|
|
|
|
|
|
|
16 |
client = QdrantClient(
|
17 |
url="https://763bc1da-0673-4535-91ac-b5538ec0287f.us-east4-0.gcp.cloud.qdrant.io:6333",
|
18 |
-
api_key=
|
19 |
) # Persists changes to disk, fast prototyping
|
20 |
|
21 |
COLLECTION_NAME="semantic_image_search"
|
22 |
|
23 |
|
24 |
dense_vector_retriever = Qdrant(client, COLLECTION_NAME, embeddings)
|
25 |
-
images_data = pd.read_csv("images.csv", on_bad_lines='skip')
|
26 |
|
27 |
def get_link(query):
|
28 |
Search_Query = query
|
29 |
-
neutral_retiever =
|
30 |
result = neutral_retiever.get_relevant_documents(Search_Query)
|
31 |
filtered_images = get_results(result)
|
32 |
filtered_img_ids = [doc.metadata.get("image_id") for doc in result]
|
|
|
1 |
# Initialize a retriever using Qdrant and SentenceTransformer embeddings
|
2 |
from langchain_community.vectorstores import Qdrant
|
|
|
3 |
from langchain_community.embeddings import SentenceTransformerEmbeddings
|
4 |
+
from kaggle_secrets import UserSecretsClient
|
5 |
from qdrant_client import QdrantClient
|
6 |
import pandas as pd
|
7 |
+
import gradio as gd
|
8 |
|
9 |
|
10 |
embeddings = SentenceTransformerEmbeddings(model_name='sentence-transformers/clip-ViT-B-32')
|
|
|
13 |
filtered_img_ids = [doc.metadata.get("image_id") for doc in search_results]
|
14 |
return filtered_img_ids
|
15 |
|
16 |
+
user_secrets = UserSecretsClient()
|
17 |
+
vector_db_key = user_secrets.get_secret("vector_db_key")
|
18 |
+
|
19 |
client = QdrantClient(
|
20 |
url="https://763bc1da-0673-4535-91ac-b5538ec0287f.us-east4-0.gcp.cloud.qdrant.io:6333",
|
21 |
+
api_key=vector_db_key,
|
22 |
) # Persists changes to disk, fast prototyping
|
23 |
|
24 |
COLLECTION_NAME="semantic_image_search"
|
25 |
|
26 |
|
27 |
dense_vector_retriever = Qdrant(client, COLLECTION_NAME, embeddings)
|
28 |
+
images_data = pd.read_csv("/kaggle/input/fashion-product-images-dataset/fashion-dataset/images.csv", on_bad_lines='skip')
|
29 |
|
30 |
def get_link(query):
|
31 |
Search_Query = query
|
32 |
+
neutral_retiever = dense_vector_retriever.as_retriever()
|
33 |
result = neutral_retiever.get_relevant_documents(Search_Query)
|
34 |
filtered_images = get_results(result)
|
35 |
filtered_img_ids = [doc.metadata.get("image_id") for doc in result]
|