File size: 5,455 Bytes
35aaf1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9aeb33e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import torch
import commons
import models
class SynthesizerTrn(models.SynthesizerTrn):
  """
  Synthesizer for Training
  """

  def __init__(self, 
    n_vocab,
    spec_channels,
    segment_size,
    inter_channels,
    hidden_channels,
    filter_channels,
    n_heads,
    n_layers,
    kernel_size,
    p_dropout,
    resblock, 
    resblock_kernel_sizes, 
    resblock_dilation_sizes, 
    upsample_rates, 
    upsample_initial_channel, 
    upsample_kernel_sizes,
    n_speakers=0,
    gin_channels=0,
    use_sdp=True,
    **kwargs):

    super().__init__(    
      n_vocab,
      spec_channels,
      segment_size,
      inter_channels,
      hidden_channels,
      filter_channels,
      n_heads,
      n_layers,
      kernel_size,
      p_dropout,
      resblock, 
      resblock_kernel_sizes, 
      resblock_dilation_sizes, 
      upsample_rates, 
      upsample_initial_channel, 
      upsample_kernel_sizes,
      n_speakers=n_speakers,
      gin_channels=gin_channels,
      use_sdp=use_sdp,
      **kwargs
    )

  def infer(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None):
    from ONNXVITS_utils import runonnx

    #x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
    x, m_p, logs_p, x_mask = runonnx("ONNX_net/enc_p.onnx", x=x.numpy(), x_lengths=x_lengths.numpy())
    x = torch.from_numpy(x)
    m_p = torch.from_numpy(m_p)
    logs_p = torch.from_numpy(logs_p)
    x_mask = torch.from_numpy(x_mask)

    if self.n_speakers > 0:
      g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
    else:
      g = None

    #logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
    logw = runonnx("ONNX_net/dp.onnx", x=x.numpy(), x_mask=x_mask.numpy(), g=g.numpy())
    logw = torch.from_numpy(logw[0])

    w = torch.exp(logw) * x_mask * length_scale
    w_ceil = torch.ceil(w)
    y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
    y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
    attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
    attn = commons.generate_path(w_ceil, attn_mask)

    m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
    logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']

    z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
    
    #z = self.flow(z_p, y_mask, g=g, reverse=True)
    z = runonnx("ONNX_net/flow.onnx", z_p=z_p.numpy(), y_mask=y_mask.numpy(), g=g.numpy())
    z = torch.from_numpy(z[0])

    #o = self.dec((z * y_mask)[:,:,:max_len], g=g)
    o = runonnx("ONNX_net/dec.onnx", z_in=(z * y_mask)[:,:,:max_len].numpy(), g=g.numpy())
    o = torch.from_numpy(o[0])

    return o, attn, y_mask, (z, z_p, m_p, logs_p)

  def predict_duration(self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None,
              emotion_embedding=None):
    from ONNXVITS_utils import runonnx

    #x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
    x, m_p, logs_p, x_mask = runonnx("ONNX_net/enc_p.onnx", x=x.numpy(), x_lengths=x_lengths.numpy())
    x = torch.from_numpy(x)
    m_p = torch.from_numpy(m_p)
    logs_p = torch.from_numpy(logs_p)
    x_mask = torch.from_numpy(x_mask)

    if self.n_speakers > 0:
      g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
    else:
      g = None

    #logw = self.dp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w)
    logw = runonnx("ONNX_net/dp.onnx", x=x.numpy(), x_mask=x_mask.numpy(), g=g.numpy())
    logw = torch.from_numpy(logw[0])

    w = torch.exp(logw) * x_mask * length_scale
    w_ceil = torch.ceil(w)
    return list(w_ceil.squeeze())

  def infer_with_duration(self, x, x_lengths, w_ceil, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1., max_len=None,
              emotion_embedding=None):
    from ONNXVITS_utils import runonnx

    #x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths)
    x, m_p, logs_p, x_mask = runonnx("ONNX_net/enc_p.onnx", x=x.numpy(), x_lengths=x_lengths.numpy())
    x = torch.from_numpy(x)
    m_p = torch.from_numpy(m_p)
    logs_p = torch.from_numpy(logs_p)
    x_mask = torch.from_numpy(x_mask)

    if self.n_speakers > 0:
      g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1]
    else:
      g = None
    assert len(w_ceil) == x.shape[2]
    w_ceil = torch.FloatTensor(w_ceil).reshape(1, 1, -1)
    y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
    y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype)
    attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
    attn = commons.generate_path(w_ceil, attn_mask)

    m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']
    logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t']

    z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale
    
    #z = self.flow(z_p, y_mask, g=g, reverse=True)
    z = runonnx("ONNX_net/flow.onnx", z_p=z_p.numpy(), y_mask=y_mask.numpy(), g=g.numpy())
    z = torch.from_numpy(z[0])

    #o = self.dec((z * y_mask)[:,:,:max_len], g=g)
    o = runonnx("ONNX_net/dec.onnx", z_in=(z * y_mask)[:,:,:max_len].numpy(), g=g.numpy())
    o = torch.from_numpy(o[0])

    return o, attn, y_mask, (z, z_p, m_p, logs_p)