CyberAssassin commited on
Commit
00050d7
·
verified ·
1 Parent(s): cbf8aae

Update agent.py

Browse files
Files changed (1) hide show
  1. agent.py +9 -15
agent.py CHANGED
@@ -126,32 +126,26 @@ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-b
126
  supabase: Client = create_client(
127
  os.environ.get("SUPABASE_URL"),
128
  os.environ.get("SUPABASE_SERVICE_KEY"))
129
- # Initialize vector store with correct configuration
130
  vector_store = SupabaseVectorStore(
131
  client=supabase,
132
  embedding=embeddings,
133
  table_name="documents",
134
- query_name="match_documents"
 
 
 
 
135
  )
136
 
137
- # Create retriever with proper search configuration
138
  retriever = vector_store.as_retriever(
139
  search_kwargs={
140
- "k": 3, # Number of results
141
- "filter": {}, # Default filter
142
- "score_threshold": 0.7 # Optional similarity threshold
143
  }
144
  )
145
 
146
- # Create tool with the configured retriever
147
- retriever_tool = create_retriever_tool(
148
- retriever=retriever,
149
- name="document_retriever",
150
- description="Searches for similar documents using vector similarity",
151
- )
152
-
153
-
154
-
155
  tools = [
156
  multiply,
157
  add,
 
126
  supabase: Client = create_client(
127
  os.environ.get("SUPABASE_URL"),
128
  os.environ.get("SUPABASE_SERVICE_KEY"))
129
+ # Initialize vector store with proper type handling
130
  vector_store = SupabaseVectorStore(
131
  client=supabase,
132
  embedding=embeddings,
133
  table_name="documents",
134
+ query_name="match_documents",
135
+ columns={
136
+ "content": "result_content",
137
+ "metadata": "result_metadata"
138
+ }
139
  )
140
 
141
+ # Create retriever with jsonb-compatible filters
142
  retriever = vector_store.as_retriever(
143
  search_kwargs={
144
+ "k": 3,
145
+ "filter": {} # Will be automatically converted to jsonb
 
146
  }
147
  )
148
 
 
 
 
 
 
 
 
 
 
149
  tools = [
150
  multiply,
151
  add,