Spaces:
Sleeping
Sleeping
Update agent.py
Browse files
agent.py
CHANGED
@@ -126,21 +126,32 @@ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-b
|
|
126 |
supabase: Client = create_client(
|
127 |
os.environ.get("SUPABASE_URL"),
|
128 |
os.environ.get("SUPABASE_SERVICE_KEY"))
|
|
|
129 |
vector_store = SupabaseVectorStore(
|
130 |
client=supabase,
|
131 |
embedding=embeddings,
|
132 |
table_name="documents",
|
133 |
-
query_name="match_documents",
|
|
|
|
|
|
|
|
|
|
|
134 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
retriever_tool = create_retriever_tool(
|
136 |
-
retriever=
|
137 |
-
search_kwargs={
|
138 |
-
"k": 3,
|
139 |
-
"filter": {}
|
140 |
-
}
|
141 |
-
),
|
142 |
name="document_retriever",
|
143 |
-
description="Searches for similar documents",
|
144 |
)
|
145 |
|
146 |
|
|
|
126 |
supabase: Client = create_client(
|
127 |
os.environ.get("SUPABASE_URL"),
|
128 |
os.environ.get("SUPABASE_SERVICE_KEY"))
|
129 |
+
# Initialize vector store with proper column mappings
|
130 |
vector_store = SupabaseVectorStore(
|
131 |
client=supabase,
|
132 |
embedding=embeddings,
|
133 |
table_name="documents",
|
134 |
+
query_name="match_documents",
|
135 |
+
columns={
|
136 |
+
"id": "document_id", # Maps to function output
|
137 |
+
"content": "document_content", # Maps to function output
|
138 |
+
"metadata": "document_metadata" # Maps to function output
|
139 |
+
}
|
140 |
)
|
141 |
+
|
142 |
+
# Create retriever with search parameters
|
143 |
+
retriever = vector_store.as_retriever(
|
144 |
+
search_kwargs={
|
145 |
+
"k": 3,
|
146 |
+
"filter": {}
|
147 |
+
}
|
148 |
+
)
|
149 |
+
|
150 |
+
# Create tool with the configured retriever
|
151 |
retriever_tool = create_retriever_tool(
|
152 |
+
retriever=retriever,
|
|
|
|
|
|
|
|
|
|
|
153 |
name="document_retriever",
|
154 |
+
description="Searches for similar documents in knowledge base",
|
155 |
)
|
156 |
|
157 |
|