# app.py import gradio as gr from transformers import LlamaForCausalLM, LlamaTokenizer import datasets import torch import json import os import pdfplumber from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training from accelerate import Accelerator import bitsandbytes import sentencepiece import huggingface_hub from transformers import TrainingArguments, Trainer # Debug: Print all environment variables to verify 'LLama' is present print("Environment variables:", dict(os.environ)) # Retrieve the token from Hugging Face Space secrets # Token placement: LLama:levi put token here LLama = os.getenv("LLama") # Retrieves the value of the 'LLama' environment variable if not LLama: raise ValueError("LLama token not found in environment variables. Please set it in Hugging Face Space secrets under 'Settings' > 'Secrets' as 'LLama'.") # Debug: Print the token to verify it's being read (remove this in production) print(f"Retrieved LLama token: {LLama[:5]}... (first 5 chars for security)") # Authenticate with Hugging Face huggingface_hub.login(token=LLama) # Model setup MODEL_ID = "meta-llama/Llama-2-7b-hf" tokenizer = LlamaTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True) # Load model with default attention mechanism (no Flash Attention) model = LlamaForCausalLM.from_pretrained( MODEL_ID, torch_dtype=torch.bfloat16, device_map="auto", load_in_8bit=True ) # Add padding token if it doesn't exist and resize embeddings if tokenizer.pad_token is None: tokenizer.add_special_tokens({'pad_token': '[PAD]'}) model.resize_token_embeddings(len(tokenizer)) # Prepare model for LoRA training model = prepare_model_for_kbit_training(model) peft_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=["q_proj", "k_proj", "v_proj", "o_proj"] ) model = get_peft_model(model, peft_config) model.print_trainable_parameters() # Function to process uploaded files and train def train_ui(files): try: # Process multiple PDFs or JSON raw_text = "" dataset = None # Initialize dataset as None for file in files: if file.name.endswith(".pdf"): with pdfplumber.open(file.name) as pdf: for page in pdf.pages: raw_text += page.extract_text() or "" elif file.name.endswith(".json"): with open(file.name, "r", encoding="utf-8") as f: raw_data = json.load(f) training_data = raw_data.get("training_pairs", raw_data) with open("temp_fraud_data.json", "w", encoding="utf-8") as f: json.dump({"training_pairs": training_data}, f) dataset = datasets.load_dataset("json", data_files="temp_fraud_data.json") if not raw_text and not dataset: return "Error: No valid PDF or JSON data found." # Create training pairs from PDFs if no JSON if raw_text: def create_training_pairs(text): pairs = [] if "Haloperidol" in text and "daily" in text.lower(): pairs.append({ "input": "Patient received Haloperidol daily. Is this overmedication?", "output": "Yes, daily Haloperidol use without documented severe psychosis or failed alternatives may indicate overmedication, violating CMS guidelines." }) if "Lorazepam" in text and "frequent" in text.lower(): pairs.append({ "input": "Care logs show frequent Lorazepam use with a 90-day supply. Is this suspicious?", "output": "Yes, frequent use with a large supply suggests potential overuse or mismanagement, a fraud indicator." }) return pairs training_data = create_training_pairs(raw_text) with open("temp_fraud_data.json", "w") as f: json.dump({"training_pairs": training_data}, f) dataset = datasets.load_dataset("json", data_files="temp_fraud_data.json") # Tokenization function def tokenize_data(example): formatted_text = f"[INST] {example['input']} [/INST] {example['output']}" inputs = tokenizer(formatted_text, padding="max_length", truncation=True, max_length=4096, return_tensors="pt") inputs["labels"] = inputs["input_ids"].clone() return {k: v.squeeze(0) for k, v in inputs.items()} tokenized_dataset = dataset["train"].map(tokenize_data, batched=True, remove_columns=dataset["train"].column_names) # Training setup training_args = TrainingArguments( output_dir="./fine_tuned_llama_healthcare", per_device_train_batch_size=4, gradient_accumulation_steps=8, eval_strategy="no", save_strategy="epoch", save_total_limit=2, num_train_epochs=5, learning_rate=2e-5, weight_decay=0.01, logging_dir="./logs", logging_steps=10, bf16=True, gradient_checkpointing=True, optim="adamw_torch", warmup_steps=100, ) def custom_data_collator(features): return { "input_ids": torch.stack([f["input_ids"] for f in features]), "attention_mask": torch.stack([f["attention_mask"] for f in features]), "labels": torch.stack([f["labels"] for f in features]), } trainer = Trainer( model=model, args=training_args, train_dataset=tokenized_dataset, data_collator=custom_data_collator, ) trainer.train() model.save_pretrained("./fine_tuned_llama_healthcare") tokenizer.save_pretrained("./fine_tuned_llama_healthcare") return "Training completed! Model saved to ./fine_tuned_llama_healthcare" except Exception as e: return f"Error: {str(e)}. Please check file format, dependencies, or the LLama token." # Gradio UI with gr.Blocks(title="Healthcare Fraud Detection Fine-Tuning") as demo: gr.Markdown("# Fine-Tune LLaMA 2 for Healthcare Fraud Analysis") gr.Markdown("Upload PDFs (e.g., care logs, medication records) or a JSON file with training pairs.") file_input = gr.File(label="Upload Files (PDF/JSON)", file_count="multiple") train_button = gr.Button("Start Fine-Tuning") output = gr.Textbox(label="Training Status", lines=5) train_button.click(fn=train_ui, inputs=file_input, outputs=output) # Launch the Gradio app demo.launch()