File size: 7,868 Bytes
d594a38
 
 
 
 
 
 
 
 
7406911
d594a38
6f80de5
d803be1
d594a38
 
 
d803be1
7406911
 
 
 
 
 
 
 
 
 
 
 
d594a38
 
 
 
 
7406911
d594a38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9847233
d594a38
 
 
 
 
9847233
d594a38
 
 
 
 
 
 
 
 
7406911
 
 
542890e
7406911
 
 
 
542890e
7406911
 
 
d594a38
 
 
 
 
 
 
 
 
 
7406911
d594a38
 
 
7406911
 
 
 
 
 
 
 
 
 
d594a38
 
 
 
 
 
 
 
7406911
 
 
 
 
 
 
 
 
d594a38
d803be1
d594a38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d803be1
 
7406911
 
 
 
 
 
 
 
 
 
 
d594a38
542890e
 
d803be1
 
542890e
d594a38
 
 
 
542890e
 
d594a38
 
 
542890e
d594a38
d803be1
df527c8
7406911
 
 
 
 
 
 
 
 
 
d594a38
 
 
542890e
d803be1
542890e
 
 
d594a38
6f80de5
d803be1
6f80de5
 
d803be1
6f80de5
 
d803be1
6f80de5
d803be1
6f80de5
d803be1
6f80de5
 
7406911
d803be1
6f80de5
d803be1
6f80de5
 
 
 
 
 
 
d803be1
7406911
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
from concurrent.futures import ThreadPoolExecutor
from urllib.parse import quote

import os
import io

from trafilatura import extract
from selenium.common.exceptions import TimeoutException
from langchain_core.documents.base import Document
from langchain_community.vectorstores.faiss import FAISS
from langchain_experimental.text_splitter import SemanticChunker
from langchain.text_splitter import RecursiveCharacterTextSplitter, TokenTextSplitter
from langsmith import traceable
import requests
import pdfplumber

@traceable(run_type="tool", name="get_sources")
def get_sources(query, max_pages=10, domain=None):
    """
    Fetch search results from the Brave Search API based on the given query.

    Args:
        query (str): The search query.
        max_pages (int): Maximum number of pages to retrieve.
        domain (str, optional): Limit search to a specific domain.

    Returns:
        list: A list of search results with title, link, snippet, and favicon.
    """
    search_query = query
    if domain:
        search_query += f" site:{domain}"

    url = f"https://api.search.brave.com/res/v1/web/search?q={quote(search_query)}&count={max_pages}"

    headers = {
        'Accept': 'application/json',
        'Accept-Encoding': 'gzip',
        'X-Subscription-Token': os.getenv("BRAVE_SEARCH_API_KEY")
    }

    try:
        response = requests.get(url, headers=headers, timeout=30)

        if response.status_code != 200:
            return []

        json_response = response.json()

        if 'web' not in json_response or 'results' not in json_response['web']:
            print(response.text)
            raise Exception('Invalid API response format')

        final_results = [{
            'title': result['title'],
            'link': result['url'],
            'snippet': extract(result['description'], output_format='txt', include_tables=False, include_images=False, include_formatting=True),
            'favicon': result.get('profile', {}).get('img', '')
        } for result in json_response['web']['results']]

        return final_results

    except Exception as error:
        print('Error fetching search results:', error)
        raise

def fetch_with_selenium(url, driver, timeout=8):
    """
    Fetch the HTML content of a webpage using Selenium.

    Args:
        url (str): The URL of the webpage.
        driver: Selenium WebDriver instance.
        timeout (int): Page load timeout in seconds.

    Returns:
        str: The HTML content of the page.
    """
    try:
        driver.set_page_load_timeout(timeout)
        driver.get(url)
        driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
        html = driver.page_source
    except TimeoutException:
        print(f"Page load timed out after {timeout} seconds.")
        html = None
    finally:
        driver.quit()

    return html

def fetch_with_timeout(url, timeout=8):
    """
    Fetch a webpage with a specified timeout.

    Args:
        url (str): The URL of the webpage.
        timeout (int): Request timeout in seconds.

    Returns:
        Response: The HTTP response object, or None if an error occurred.
    """
    try:
        response = requests.get(url, timeout=timeout)
        response.raise_for_status()
        return response
    except requests.RequestException as error:
        return None

def process_source(source):
    """
    Process a single source to extract its content.

    Args:
        source (dict): A dictionary containing the source's link and other metadata.

    Returns:
        dict: The source with its extracted page content.
    """
    url = source['link']
    response = fetch_with_timeout(url, 2)
    if response:
        content_type = response.headers.get('Content-Type')
        if content_type:
            if content_type.startswith('application/pdf'):
                # The response is a PDF file
                pdf_content = response.content
                # Create a file-like object from the bytes
                pdf_file = io.BytesIO(pdf_content)
                # Extract text from PDF using pdfplumber
                with pdfplumber.open(pdf_file) as pdf:
                    text = ""
                    for page in pdf.pages:
                        text += page.extract_text()
                return {**source, 'page_content': text}
            elif content_type.startswith('text/html'):
                # The response is an HTML file
                html = response.text
                main_content = extract(html, output_format='txt', include_links=True)
                return {**source, 'page_content': main_content}
            else:
                print(f"Skipping {url}! Unsupported content type: {content_type}")
                return {**source, 'page_content': source['snippet']}
        else:
            print(f"Skipping {url}! No content type")
            return {**source, 'page_content': source['snippet']}
    return {**source, 'page_content': None}

@traceable(run_type="tool", name="get_links_contents")
def get_links_contents(sources, get_driver_func=None, use_selenium=False):
    """
    Retrieve and process the content of multiple sources.

    Args:
        sources (list): A list of source dictionaries.
        get_driver_func (callable, optional): Function to get a Selenium WebDriver.
        use_selenium (bool): Whether to use Selenium for fetching content.

    Returns:
        list: A list of processed sources with their page content.
    """
    with ThreadPoolExecutor() as executor:
        results = list(executor.map(process_source, sources))

    if get_driver_func is None or not use_selenium:
        return [result for result in results if result is not None and result['page_content']]

    for result in results:
        if result['page_content'] is None:
            url = result['link']
            print(f"Fetching with selenium {url}")
            driver = get_driver_func()
            html = fetch_with_selenium(url, driver)
            main_content = extract(html, output_format='txt', include_links=True)
            if main_content:
                result['page_content'] = main_content
    return results

@traceable(run_type="embedding")
def vectorize(contents, embedding_model):
    """
    Vectorize the contents using the specified embedding model.

    Args:
        contents (list): A list of content dictionaries.
        embedding_model: The embedding model to use.

    Returns:
        FAISS: A FAISS vector store containing the vectorized documents.
    """
    documents = []
    for content in contents:
        try:
            page_content = content['page_content']
            if page_content:
                metadata = {'title': content['title'], 'source': content['link']}
                doc = Document(page_content=content['page_content'], metadata=metadata)
                documents.append(doc)
        except Exception as e:
            print(f"Error processing content for {content['link']}: {e}")

    # Initialize recursive text splitter
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)

    # Split documents
    split_documents = text_splitter.split_documents(documents)

    # Create vector store
    vector_store = None
    batch_size = 250  # Slightly less than 256 to be safe

    for i in range(0, len(split_documents), batch_size):
        batch = split_documents[i:i+batch_size]

        if vector_store is None:
            vector_store = FAISS.from_documents(batch, embedding_model)
        else:
            texts = [doc.page_content for doc in batch]
            metadatas = [doc.metadata for doc in batch]
            embeddings = embedding_model.embed_documents(texts)
            vector_store.add_embeddings(
                list(zip(texts, embeddings)),
                metadatas
            )

    return vector_store