Spaces:
Runtime error
Runtime error
File size: 10,814 Bytes
4ea50ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 |
#include <vector>
#include "cpu/dcn_v2_im2col_cpu.h"
#include <iostream>
#include <ATen/ATen.h>
//#include <ATen/cuda/CUDAContext.h>
#include <TH/TH.h>
//#include <THC/THCAtomics.cuh>
//#include <THC/THCDeviceUtils.cuh>
//extern THCState *state;
// author: Charles Shang
// https://github.com/torch/cunn/blob/master/lib/THCUNN/generic/SpatialConvolutionMM.cu
// modified from the CUDA version for CPU use by Daniel K. Suhendro
// edit by: James Bockman and Matthew Howe
// modified for torch implementation to remove use of deprecated torch access to Blas
at::Tensor
dcn_v2_cpu_forward(const at::Tensor &input,
const at::Tensor &weight,
const at::Tensor &bias,
const at::Tensor &offset,
const at::Tensor &mask,
const int kernel_h,
const int kernel_w,
const int stride_h,
const int stride_w,
const int pad_h,
const int pad_w,
const int dilation_h,
const int dilation_w,
const int deformable_group)
{
// THCAssertSameGPU(THCudaTensor_checkGPU(state, 5, input, weight, bias, offset, mask));
/*AT_ASSERTM(input.is_cuda(), "input must be a CUDA tensor");
AT_ASSERTM(weight.is_cuda(), "weight must be a CUDA tensor");
AT_ASSERTM(bias.is_cuda(), "bias must be a CUDA tensor");
AT_ASSERTM(offset.is_cuda(), "offset must be a CUDA tensor");
AT_ASSERTM(mask.is_cuda(), "mask must be a CUDA tensor");*/
const int batch = input.size(0);
const int channels = input.size(1);
const int height = input.size(2);
const int width = input.size(3);
const int channels_out = weight.size(0);
const int channels_kernel = weight.size(1);
const int kernel_h_ = weight.size(2);
const int kernel_w_ = weight.size(3);
// printf("Kernels: %d %d %d %d\n", kernel_h_, kernel_w_, kernel_w, kernel_h);
// printf("Channels: %d %d\n", channels, channels_kernel);
// printf("Channels: %d %d\n", channels_out, channels_kernel);
AT_ASSERTM(kernel_h_ == kernel_h && kernel_w_ == kernel_w,
"Input shape and kernel shape wont match: (%d x %d vs %d x %d).", kernel_h_, kernel_w, kernel_h_, kernel_w_);
AT_ASSERTM(channels == channels_kernel,
"Input shape and kernel channels wont match: (%d vs %d).", channels, channels_kernel);
const int height_out = (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
const int width_out = (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
// auto ones = at::ones({height_out, width_out}, input.options());
auto ones = at::ones({bias.sizes()[0], height_out, width_out}, input.options());
auto columns = at::empty({channels * kernel_h * kernel_w, 1 * height_out * width_out}, input.options());
auto output = at::zeros({batch, channels_out, height_out, width_out}, input.options());
using scalar_t = float;
for (int b = 0; b < batch; b++)
{
auto input_n = input.select(0, b);
auto offset_n = offset.select(0, b);
auto mask_n = mask.select(0, b);
auto output_n = output.select(0, b);
// std::cout << "output_n: " << output_n << "output.select(0,b): " << output.select(0,b) << "\n";
// Do Bias first:
// M,N,K are dims of matrix A and B
// (see http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm)
// (N x 1) (1 x M)
// torch implementation
auto ones_T = at::transpose(ones.contiguous(), 2, 0);
ones_T = at::mul(ones_T, bias.contiguous());
ones_T = at::transpose(ones_T, 2, 0);
output_n = at::add(output_n, ones_T);
modulated_deformable_im2col_cpu(input_n.data_ptr<scalar_t>(),
offset_n.data_ptr<scalar_t>(),
mask_n.data_ptr<scalar_t>(),
1, channels, height, width,
height_out, width_out, kernel_h, kernel_w,
pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w,
deformable_group,
columns.data_ptr<scalar_t>());
//(k * m) x (m * n)
// Y = WC
// torch implementation
auto weight_flat = weight.view({channels_out, channels * kernel_h * kernel_w});
auto product = at::matmul(weight_flat, columns);
output.select(0, b) = at::add(output_n, product.view({channels_out, height_out, width_out}));
}
return output;
}
std::vector<at::Tensor> dcn_v2_cpu_backward(const at::Tensor &input,
const at::Tensor &weight,
const at::Tensor &bias,
const at::Tensor &offset,
const at::Tensor &mask,
const at::Tensor &grad_output,
int kernel_h, int kernel_w,
int stride_h, int stride_w,
int pad_h, int pad_w,
int dilation_h, int dilation_w,
int deformable_group)
{
THArgCheck(input.is_contiguous(), 1, "input tensor has to be contiguous");
THArgCheck(weight.is_contiguous(), 2, "weight tensor has to be contiguous");
/*AT_ASSERTM(input.is_cuda(), "input must be a CUDA tensor");
AT_ASSERTM(weight.is_cuda(), "weight must be a CUDA tensor");
AT_ASSERTM(bias.is_cuda(), "bias must be a CUDA tensor");
AT_ASSERTM(offset.is_cuda(), "offset must be a CUDA tensor");
AT_ASSERTM(mask.is_cuda(), "mask must be a CUDA tensor");*/
const int batch = input.size(0);
const int channels = input.size(1);
const int height = input.size(2);
const int width = input.size(3);
const int channels_out = weight.size(0);
const int channels_kernel = weight.size(1);
const int kernel_h_ = weight.size(2);
const int kernel_w_ = weight.size(3);
AT_ASSERTM(kernel_h_ == kernel_h && kernel_w_ == kernel_w,
"Input shape and kernel shape wont match: (%d x %d vs %d x %d).", kernel_h_, kernel_w, kernel_h_, kernel_w_);
AT_ASSERTM(channels == channels_kernel,
"Input shape and kernel channels wont match: (%d vs %d).", channels, channels_kernel);
const int height_out = (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
const int width_out = (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
auto ones = at::ones({height_out, width_out}, input.options());
auto columns = at::zeros({channels * kernel_h * kernel_w, 1 * height_out * width_out}, input.options());
auto output = at::empty({batch, channels_out, height_out, width_out}, input.options());
auto grad_input = at::zeros_like(input);
auto grad_weight = at::zeros_like(weight);
auto grad_bias = at::zeros_like(bias);
auto grad_offset = at::zeros_like(offset);
auto grad_mask = at::zeros_like(mask);
using scalar_t = float;
for (int b = 0; b < batch; b++)
{
auto input_n = input.select(0, b);
auto offset_n = offset.select(0, b);
auto mask_n = mask.select(0, b);
auto grad_output_n = grad_output.select(0, b);
auto grad_input_n = grad_input.select(0, b);
auto grad_offset_n = grad_offset.select(0, b);
auto grad_mask_n = grad_mask.select(0, b);
// Torch implementation
auto weight_flat = weight.view({channels_out, channels*kernel_h*kernel_w});
weight_flat = at::transpose(weight_flat, 1, 0);
auto grad_output_n_flat = grad_output_n.view({channels_out, height_out*width_out});
columns = at::matmul(weight_flat, grad_output_n_flat);
// gradient w.r.t. input coordinate data
modulated_deformable_col2im_coord_cpu(columns.data_ptr<scalar_t>(),
input_n.data_ptr<scalar_t>(),
offset_n.data_ptr<scalar_t>(),
mask_n.data_ptr<scalar_t>(),
1, channels, height, width,
height_out, width_out, kernel_h, kernel_w,
pad_h, pad_w, stride_h, stride_w,
dilation_h, dilation_w, deformable_group,
grad_offset_n.data_ptr<scalar_t>(),
grad_mask_n.data_ptr<scalar_t>());
// gradient w.r.t. input data
modulated_deformable_col2im_cpu(columns.data_ptr<scalar_t>(),
offset_n.data_ptr<scalar_t>(),
mask_n.data_ptr<scalar_t>(),
1, channels, height, width,
height_out, width_out, kernel_h, kernel_w,
pad_h, pad_w, stride_h, stride_w,
dilation_h, dilation_w, deformable_group,
grad_input_n.data_ptr<scalar_t>());
// gradient w.r.t. weight, dWeight should accumulate across the batch and group
modulated_deformable_im2col_cpu(input_n.data_ptr<scalar_t>(),
offset_n.data_ptr<scalar_t>(),
mask_n.data_ptr<scalar_t>(),
1, channels, height, width,
height_out, width_out, kernel_h, kernel_w,
pad_h, pad_w, stride_h, stride_w,
dilation_h, dilation_w, deformable_group,
columns.data_ptr<scalar_t>());
// Torch implementation
auto product = at::matmul(grad_output_n_flat, at::transpose(columns, 1, 0));
grad_weight = at::add(grad_weight, product.view({channels_out, channels, kernel_h, kernel_w}));
// Torch implementation
auto ones_flat = ones.view({height_out*width_out});
product = at::matmul(grad_output_n_flat, ones_flat);
grad_bias = at::add(grad_bias, product);
}
return {
grad_input, grad_offset, grad_mask, grad_weight, grad_bias
};
} |