File size: 10,814 Bytes
4ea50ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#include <vector>
#include "cpu/dcn_v2_im2col_cpu.h"
#include <iostream>

#include <ATen/ATen.h>
//#include <ATen/cuda/CUDAContext.h>

#include <TH/TH.h>
//#include <THC/THCAtomics.cuh>
//#include <THC/THCDeviceUtils.cuh>

//extern THCState *state;

// author: Charles Shang
// https://github.com/torch/cunn/blob/master/lib/THCUNN/generic/SpatialConvolutionMM.cu

// modified from the CUDA version for CPU use by Daniel K. Suhendro

// edit by: James Bockman and Matthew Howe
// modified for torch implementation to remove use of deprecated torch access to Blas

at::Tensor
dcn_v2_cpu_forward(const at::Tensor &input,
                    const at::Tensor &weight,
                    const at::Tensor &bias,
                    const at::Tensor &offset,
                    const at::Tensor &mask,
                    const int kernel_h,
                    const int kernel_w,
                    const int stride_h,
                    const int stride_w,
                    const int pad_h,
                    const int pad_w,
                    const int dilation_h,
                    const int dilation_w,
                    const int deformable_group)
{
    // THCAssertSameGPU(THCudaTensor_checkGPU(state, 5, input, weight, bias, offset, mask));
    /*AT_ASSERTM(input.is_cuda(), "input must be a CUDA tensor");
    AT_ASSERTM(weight.is_cuda(), "weight must be a CUDA tensor");
    AT_ASSERTM(bias.is_cuda(), "bias must be a CUDA tensor");
    AT_ASSERTM(offset.is_cuda(), "offset must be a CUDA tensor");
    AT_ASSERTM(mask.is_cuda(), "mask must be a CUDA tensor");*/

    const int batch = input.size(0);
    const int channels = input.size(1);
    const int height = input.size(2);
    const int width = input.size(3);

    const int channels_out = weight.size(0);
    const int channels_kernel = weight.size(1);
    const int kernel_h_ = weight.size(2);
    const int kernel_w_ = weight.size(3);

    // printf("Kernels: %d %d %d %d\n", kernel_h_, kernel_w_, kernel_w, kernel_h);
    // printf("Channels: %d %d\n", channels, channels_kernel);
    // printf("Channels: %d %d\n", channels_out, channels_kernel);

    AT_ASSERTM(kernel_h_ == kernel_h && kernel_w_ == kernel_w,
               "Input shape and kernel shape wont match: (%d x %d vs %d x %d).", kernel_h_, kernel_w, kernel_h_, kernel_w_);

    AT_ASSERTM(channels == channels_kernel,
               "Input shape and kernel channels wont match: (%d vs %d).", channels, channels_kernel);

    const int height_out = (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
    const int width_out = (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;

    // auto ones = at::ones({height_out, width_out}, input.options());
    auto ones = at::ones({bias.sizes()[0], height_out, width_out}, input.options());
    auto columns = at::empty({channels * kernel_h * kernel_w, 1 * height_out * width_out}, input.options());
    auto output = at::zeros({batch, channels_out, height_out, width_out}, input.options());

    using scalar_t = float;
    for (int b = 0; b < batch; b++)
    {
        auto input_n = input.select(0, b);
        auto offset_n = offset.select(0, b);
        auto mask_n = mask.select(0, b);
        auto output_n = output.select(0, b);
        // std::cout << "output_n: " << output_n << "output.select(0,b): " << output.select(0,b) << "\n"; 

        // Do Bias first:
        // M,N,K are dims of matrix A and B
        // (see http://docs.nvidia.com/cuda/cublas/#cublas-lt-t-gt-gemm)
        // (N x 1) (1 x M)

        // torch implementation
        auto ones_T = at::transpose(ones.contiguous(), 2, 0);
        ones_T = at::mul(ones_T, bias.contiguous());
        ones_T = at::transpose(ones_T, 2, 0);
        output_n = at::add(output_n, ones_T);

        modulated_deformable_im2col_cpu(input_n.data_ptr<scalar_t>(),
                                         offset_n.data_ptr<scalar_t>(),
                                         mask_n.data_ptr<scalar_t>(),
                                         1, channels, height, width,
                                         height_out, width_out, kernel_h, kernel_w,
                                         pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w,
                                         deformable_group,
                                         columns.data_ptr<scalar_t>());

        //(k * m)  x  (m * n)
        // Y = WC

        // torch implementation
        auto weight_flat = weight.view({channels_out, channels * kernel_h * kernel_w});
        auto product = at::matmul(weight_flat, columns);
        output.select(0, b) = at::add(output_n, product.view({channels_out, height_out, width_out}));
    }
    return output;
}

std::vector<at::Tensor> dcn_v2_cpu_backward(const at::Tensor &input,
                                             const at::Tensor &weight,
                                             const at::Tensor &bias,
                                             const at::Tensor &offset,
                                             const at::Tensor &mask,
                                             const at::Tensor &grad_output,
                                             int kernel_h, int kernel_w,
                                             int stride_h, int stride_w,
                                             int pad_h, int pad_w,
                                             int dilation_h, int dilation_w,
                                             int deformable_group)
{

    THArgCheck(input.is_contiguous(), 1, "input tensor has to be contiguous");
    THArgCheck(weight.is_contiguous(), 2, "weight tensor has to be contiguous");

    /*AT_ASSERTM(input.is_cuda(), "input must be a CUDA tensor");
    AT_ASSERTM(weight.is_cuda(), "weight must be a CUDA tensor");
    AT_ASSERTM(bias.is_cuda(), "bias must be a CUDA tensor");
    AT_ASSERTM(offset.is_cuda(), "offset must be a CUDA tensor");
    AT_ASSERTM(mask.is_cuda(), "mask must be a CUDA tensor");*/

    const int batch = input.size(0);
    const int channels = input.size(1);
    const int height = input.size(2);
    const int width = input.size(3);

    const int channels_out = weight.size(0);
    const int channels_kernel = weight.size(1);
    const int kernel_h_ = weight.size(2);
    const int kernel_w_ = weight.size(3);

    AT_ASSERTM(kernel_h_ == kernel_h && kernel_w_ == kernel_w,
               "Input shape and kernel shape wont match: (%d x %d vs %d x %d).", kernel_h_, kernel_w, kernel_h_, kernel_w_);

    AT_ASSERTM(channels == channels_kernel,
               "Input shape and kernel channels wont match: (%d vs %d).", channels, channels_kernel);

    const int height_out = (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
    const int width_out = (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;

    auto ones = at::ones({height_out, width_out}, input.options());
    auto columns = at::zeros({channels * kernel_h * kernel_w, 1 * height_out * width_out}, input.options());
    auto output = at::empty({batch, channels_out, height_out, width_out}, input.options());

    auto grad_input = at::zeros_like(input);
    auto grad_weight = at::zeros_like(weight);
    auto grad_bias = at::zeros_like(bias);
    auto grad_offset = at::zeros_like(offset);
    auto grad_mask = at::zeros_like(mask);

    using scalar_t = float;

    for (int b = 0; b < batch; b++)
    {
        auto input_n = input.select(0, b);
        auto offset_n = offset.select(0, b);
        auto mask_n = mask.select(0, b);
        auto grad_output_n = grad_output.select(0, b);
        auto grad_input_n = grad_input.select(0, b);
        auto grad_offset_n = grad_offset.select(0, b);
        auto grad_mask_n = grad_mask.select(0, b);



        // Torch implementation
        auto weight_flat = weight.view({channels_out, channels*kernel_h*kernel_w});
        weight_flat = at::transpose(weight_flat, 1, 0);
        auto grad_output_n_flat = grad_output_n.view({channels_out, height_out*width_out});
        columns = at::matmul(weight_flat, grad_output_n_flat);

        // gradient w.r.t. input coordinate data
        modulated_deformable_col2im_coord_cpu(columns.data_ptr<scalar_t>(),
                                               input_n.data_ptr<scalar_t>(),
                                               offset_n.data_ptr<scalar_t>(),
                                               mask_n.data_ptr<scalar_t>(),
                                               1, channels, height, width,
                                               height_out, width_out, kernel_h, kernel_w,
                                               pad_h, pad_w, stride_h, stride_w,
                                               dilation_h, dilation_w, deformable_group,
                                               grad_offset_n.data_ptr<scalar_t>(),
                                               grad_mask_n.data_ptr<scalar_t>());
        // gradient w.r.t. input data
        modulated_deformable_col2im_cpu(columns.data_ptr<scalar_t>(),
                                         offset_n.data_ptr<scalar_t>(),
                                         mask_n.data_ptr<scalar_t>(),
                                         1, channels, height, width,
                                         height_out, width_out, kernel_h, kernel_w,
                                         pad_h, pad_w, stride_h, stride_w,
                                         dilation_h, dilation_w, deformable_group,
                                         grad_input_n.data_ptr<scalar_t>());

        // gradient w.r.t. weight, dWeight should accumulate across the batch and group
        modulated_deformable_im2col_cpu(input_n.data_ptr<scalar_t>(),
                                         offset_n.data_ptr<scalar_t>(),
                                         mask_n.data_ptr<scalar_t>(),
                                         1, channels, height, width,
                                         height_out, width_out, kernel_h, kernel_w,
                                         pad_h, pad_w, stride_h, stride_w,
                                         dilation_h, dilation_w, deformable_group,
                                         columns.data_ptr<scalar_t>());

        // Torch implementation
        auto product = at::matmul(grad_output_n_flat, at::transpose(columns, 1, 0));
        grad_weight = at::add(grad_weight, product.view({channels_out, channels, kernel_h, kernel_w}));


        // Torch implementation
        auto ones_flat = ones.view({height_out*width_out});
        product = at::matmul(grad_output_n_flat, ones_flat);
        grad_bias = at::add(grad_bias, product);
    }

    return {
        grad_input, grad_offset, grad_mask, grad_weight, grad_bias
    };
}