Spaces:
Runtime error
Runtime error
File size: 12,300 Bytes
4ea50ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division
import math
import torch
from torch import nn
from torch.autograd import Function
from torch.nn.modules.utils import _pair
from torch.autograd.function import once_differentiable
import maskrcnn_benchmark._C as _backend
class _DCNv2(Function):
@staticmethod
def forward(ctx, input, offset, mask, weight, bias,
stride, padding, dilation, deformable_groups):
ctx.stride = _pair(stride)
ctx.padding = _pair(padding)
ctx.dilation = _pair(dilation)
ctx.kernel_size = _pair(weight.shape[2:4])
ctx.deformable_groups = deformable_groups
output = _backend.dcn_v2_forward(input, weight, bias,
offset, mask,
ctx.kernel_size[0], ctx.kernel_size[1],
ctx.stride[0], ctx.stride[1],
ctx.padding[0], ctx.padding[1],
ctx.dilation[0], ctx.dilation[1],
ctx.deformable_groups)
ctx.save_for_backward(input, offset, mask, weight, bias)
return output
@staticmethod
@once_differentiable
def backward(ctx, grad_output):
input, offset, mask, weight, bias = ctx.saved_tensors
grad_input, grad_offset, grad_mask, grad_weight, grad_bias = \
_backend.dcn_v2_backward(input, weight,
bias,
offset, mask,
grad_output,
ctx.kernel_size[0], ctx.kernel_size[1],
ctx.stride[0], ctx.stride[1],
ctx.padding[0], ctx.padding[1],
ctx.dilation[0], ctx.dilation[1],
ctx.deformable_groups)
return grad_input, grad_offset, grad_mask, grad_weight, grad_bias,\
None, None, None, None,
dcn_v2_conv = _DCNv2.apply
class DCNv2(nn.Module):
def __init__(self, in_channels, out_channels,
kernel_size, stride, padding, dilation=1, deformable_groups=1):
super(DCNv2, self).__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = _pair(kernel_size)
self.stride = _pair(stride)
self.padding = _pair(padding)
self.dilation = _pair(dilation)
self.deformable_groups = deformable_groups
self.weight = nn.Parameter(torch.Tensor(
out_channels, in_channels, *self.kernel_size))
self.bias = nn.Parameter(torch.Tensor(out_channels))
self.reset_parameters()
def reset_parameters(self):
n = self.in_channels
for k in self.kernel_size:
n *= k
stdv = 1. / math.sqrt(n)
self.weight.data.uniform_(-stdv, stdv)
self.bias.data.zero_()
def forward(self, input, offset, mask):
assert 2 * self.deformable_groups * self.kernel_size[0] * self.kernel_size[1] == \
offset.shape[1]
assert self.deformable_groups * self.kernel_size[0] * self.kernel_size[1] == \
mask.shape[1]
return dcn_v2_conv(input, offset, mask,
self.weight,
self.bias,
self.stride,
self.padding,
self.dilation,
self.deformable_groups)
class DCN(DCNv2):
def __init__(self, in_channels, out_channels,
kernel_size, stride, padding=0,
dilation=1, deformable_groups=2,
groups=None, bias=True):
"""
groups and bias are two dummy args which have no effect
"""
super(DCN, self).__init__(in_channels, out_channels,
kernel_size, stride, padding, dilation, deformable_groups)
channels_ = self.deformable_groups * 3 * self.kernel_size[0] * self.kernel_size[1]
self.conv_offset_mask = nn.Conv2d(self.in_channels,
channels_,
kernel_size=self.kernel_size,
stride=self.stride,
padding=self.padding,
bias=True)
self.init_offset()
def init_offset(self):
self.conv_offset_mask.weight.data.zero_()
self.conv_offset_mask.bias.data.zero_()
def forward(self, input):
out = self.conv_offset_mask(input)
o1, o2, mask = torch.chunk(out, 3, dim=1)
offset = torch.cat((o1, o2), dim=1)
mask = torch.sigmoid(mask)
return dcn_v2_conv(input, offset, mask,
self.weight, self.bias,
self.stride,
self.padding,
self.dilation,
self.deformable_groups)
class _DCNv2Pooling(Function):
@staticmethod
def forward(ctx, input, rois, offset,
spatial_scale,
pooled_size,
output_dim,
no_trans,
group_size=1,
part_size=None,
sample_per_part=4,
trans_std=.0):
ctx.spatial_scale = spatial_scale
ctx.no_trans = int(no_trans)
ctx.output_dim = output_dim
ctx.group_size = group_size
ctx.pooled_size = pooled_size
ctx.part_size = pooled_size if part_size is None else part_size
ctx.sample_per_part = sample_per_part
ctx.trans_std = trans_std
output, output_count = \
_backend.dcn_v2_psroi_pooling_forward(input, rois, offset,
ctx.no_trans, ctx.spatial_scale,
ctx.output_dim, ctx.group_size,
ctx.pooled_size, ctx.part_size,
ctx.sample_per_part, ctx.trans_std)
ctx.save_for_backward(input, rois, offset, output_count)
return output
@staticmethod
@once_differentiable
def backward(ctx, grad_output):
input, rois, offset, output_count = ctx.saved_tensors
grad_input, grad_offset = \
_backend.dcn_v2_psroi_pooling_backward(grad_output,
input,
rois,
offset,
output_count,
ctx.no_trans,
ctx.spatial_scale,
ctx.output_dim,
ctx.group_size,
ctx.pooled_size,
ctx.part_size,
ctx.sample_per_part,
ctx.trans_std)
return grad_input, None, grad_offset, \
None, None, None, None, None, None, None, None
dcn_v2_pooling = _DCNv2Pooling.apply
class DCNv2Pooling(nn.Module):
def __init__(self,
spatial_scale,
pooled_size,
output_dim,
no_trans,
group_size=1,
part_size=None,
sample_per_part=4,
trans_std=.0):
super(DCNv2Pooling, self).__init__()
self.spatial_scale = spatial_scale
self.pooled_size = pooled_size
self.output_dim = output_dim
self.no_trans = no_trans
self.group_size = group_size
self.part_size = pooled_size if part_size is None else part_size
self.sample_per_part = sample_per_part
self.trans_std = trans_std
def forward(self, input, rois, offset):
assert input.shape[1] == self.output_dim
if self.no_trans:
offset = input.new()
return dcn_v2_pooling(input, rois, offset,
self.spatial_scale,
self.pooled_size,
self.output_dim,
self.no_trans,
self.group_size,
self.part_size,
self.sample_per_part,
self.trans_std)
class DCNPooling(DCNv2Pooling):
def __init__(self,
spatial_scale,
pooled_size,
output_dim,
no_trans,
group_size=1,
part_size=None,
sample_per_part=4,
trans_std=.0,
deform_fc_dim=1024):
# don't support non square pooling
pooled_size = pooled_size[0]
super(DCNPooling, self).__init__(spatial_scale,
pooled_size,
output_dim,
no_trans,
group_size,
part_size,
sample_per_part,
trans_std)
self.deform_fc_dim = deform_fc_dim
if not no_trans:
self.offset_mask_fc = nn.Sequential(
nn.Linear(self.pooled_size * self.pooled_size *
self.output_dim, self.deform_fc_dim),
nn.ReLU(inplace=True),
nn.Linear(self.deform_fc_dim, self.deform_fc_dim),
nn.ReLU(inplace=True),
nn.Linear(self.deform_fc_dim, self.pooled_size *
self.pooled_size * 3)
)
self.offset_mask_fc[4].weight.data.zero_()
self.offset_mask_fc[4].bias.data.zero_()
def forward(self, input, rois, debug=False):
offset = input.new()
if not self.no_trans:
# do roi_align first
n = rois.shape[0]
roi = dcn_v2_pooling(input, rois, offset,
self.spatial_scale,
self.pooled_size,
self.output_dim,
True, # no trans
self.group_size,
self.part_size,
self.sample_per_part,
self.trans_std)
# build mask and offset
offset_mask = self.offset_mask_fc(roi.view(n, -1))
offset_mask = offset_mask.view(
n, 3, self.pooled_size, self.pooled_size)
o1, o2, mask = torch.chunk(offset_mask, 3, dim=1)
offset = torch.cat((o1, o2), dim=1)
mask = torch.sigmoid(mask)
# do pooling with offset and mask
return dcn_v2_pooling(input, rois, offset,
self.spatial_scale,
self.pooled_size,
self.output_dim,
self.no_trans,
self.group_size,
self.part_size,
self.sample_per_part,
self.trans_std) * mask
# only roi_align
return dcn_v2_pooling(input, rois, offset,
self.spatial_scale,
self.pooled_size,
self.output_dim,
self.no_trans,
self.group_size,
self.part_size,
self.sample_per_part,
self.trans_std)
|