File size: 12,300 Bytes
4ea50ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
from __future__ import absolute_import
from __future__ import print_function
from __future__ import division

import math
import torch
from torch import nn
from torch.autograd import Function
from torch.nn.modules.utils import _pair
from torch.autograd.function import once_differentiable

import maskrcnn_benchmark._C as _backend


class _DCNv2(Function):
    @staticmethod
    def forward(ctx, input, offset, mask, weight, bias,
                stride, padding, dilation, deformable_groups):
        ctx.stride = _pair(stride)
        ctx.padding = _pair(padding)
        ctx.dilation = _pair(dilation)
        ctx.kernel_size = _pair(weight.shape[2:4])
        ctx.deformable_groups = deformable_groups
        output = _backend.dcn_v2_forward(input, weight, bias,
                                         offset, mask,
                                         ctx.kernel_size[0], ctx.kernel_size[1],
                                         ctx.stride[0], ctx.stride[1],
                                         ctx.padding[0], ctx.padding[1],
                                         ctx.dilation[0], ctx.dilation[1],
                                         ctx.deformable_groups)
        ctx.save_for_backward(input, offset, mask, weight, bias)
        return output

    @staticmethod
    @once_differentiable
    def backward(ctx, grad_output):
        input, offset, mask, weight, bias = ctx.saved_tensors
        grad_input, grad_offset, grad_mask, grad_weight, grad_bias = \
            _backend.dcn_v2_backward(input, weight,
                                     bias,
                                     offset, mask,
                                     grad_output,
                                     ctx.kernel_size[0], ctx.kernel_size[1],
                                     ctx.stride[0], ctx.stride[1],
                                     ctx.padding[0], ctx.padding[1],
                                     ctx.dilation[0], ctx.dilation[1],
                                     ctx.deformable_groups)

        return grad_input, grad_offset, grad_mask, grad_weight, grad_bias,\
            None, None, None, None,


dcn_v2_conv = _DCNv2.apply


class DCNv2(nn.Module):

    def __init__(self, in_channels, out_channels,
                 kernel_size, stride, padding, dilation=1, deformable_groups=1):
        super(DCNv2, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = _pair(kernel_size)
        self.stride = _pair(stride)
        self.padding = _pair(padding)
        self.dilation = _pair(dilation)
        self.deformable_groups = deformable_groups

        self.weight = nn.Parameter(torch.Tensor(
            out_channels, in_channels, *self.kernel_size))
        self.bias = nn.Parameter(torch.Tensor(out_channels))
        self.reset_parameters()

    def reset_parameters(self):
        n = self.in_channels
        for k in self.kernel_size:
            n *= k
        stdv = 1. / math.sqrt(n)
        self.weight.data.uniform_(-stdv, stdv)
        self.bias.data.zero_()

    def forward(self, input, offset, mask):
        assert 2 * self.deformable_groups * self.kernel_size[0] * self.kernel_size[1] == \
            offset.shape[1]
        assert self.deformable_groups * self.kernel_size[0] * self.kernel_size[1] == \
            mask.shape[1]
        return dcn_v2_conv(input, offset, mask,
                           self.weight,
                           self.bias,
                           self.stride,
                           self.padding,
                           self.dilation,
                           self.deformable_groups)


class DCN(DCNv2):

    def __init__(self, in_channels, out_channels,
                 kernel_size, stride, padding=0,
                 dilation=1, deformable_groups=2,
                 groups=None, bias=True):
        """
        groups and bias are two dummy args which have no effect
        """
        super(DCN, self).__init__(in_channels, out_channels,
                                  kernel_size, stride, padding, dilation, deformable_groups)

        channels_ = self.deformable_groups * 3 * self.kernel_size[0] * self.kernel_size[1]
        self.conv_offset_mask = nn.Conv2d(self.in_channels,
                                          channels_,
                                          kernel_size=self.kernel_size,
                                          stride=self.stride,
                                          padding=self.padding,
                                          bias=True)
        self.init_offset()

    def init_offset(self):
        self.conv_offset_mask.weight.data.zero_()
        self.conv_offset_mask.bias.data.zero_()

    def forward(self, input):
        out = self.conv_offset_mask(input)
        o1, o2, mask = torch.chunk(out, 3, dim=1)
        offset = torch.cat((o1, o2), dim=1)
        mask = torch.sigmoid(mask)
        return dcn_v2_conv(input, offset, mask,
                           self.weight, self.bias,
                           self.stride,
                           self.padding,
                           self.dilation,
                           self.deformable_groups)



class _DCNv2Pooling(Function):
    @staticmethod
    def forward(ctx, input, rois, offset,
                spatial_scale,
                pooled_size,
                output_dim,
                no_trans,
                group_size=1,
                part_size=None,
                sample_per_part=4,
                trans_std=.0):
        ctx.spatial_scale = spatial_scale
        ctx.no_trans = int(no_trans)
        ctx.output_dim = output_dim
        ctx.group_size = group_size
        ctx.pooled_size = pooled_size
        ctx.part_size = pooled_size if part_size is None else part_size
        ctx.sample_per_part = sample_per_part
        ctx.trans_std = trans_std

        output, output_count = \
            _backend.dcn_v2_psroi_pooling_forward(input, rois, offset,
                                                  ctx.no_trans, ctx.spatial_scale,
                                                  ctx.output_dim, ctx.group_size,
                                                  ctx.pooled_size, ctx.part_size,
                                                  ctx.sample_per_part, ctx.trans_std)
        ctx.save_for_backward(input, rois, offset, output_count)
        return output

    @staticmethod
    @once_differentiable
    def backward(ctx, grad_output):
        input, rois, offset, output_count = ctx.saved_tensors
        grad_input, grad_offset = \
            _backend.dcn_v2_psroi_pooling_backward(grad_output,
                                                   input,
                                                   rois,
                                                   offset,
                                                   output_count,
                                                   ctx.no_trans,
                                                   ctx.spatial_scale,
                                                   ctx.output_dim,
                                                   ctx.group_size,
                                                   ctx.pooled_size,
                                                   ctx.part_size,
                                                   ctx.sample_per_part,
                                                   ctx.trans_std)

        return grad_input, None, grad_offset, \
            None, None, None, None, None, None, None, None


dcn_v2_pooling = _DCNv2Pooling.apply


class DCNv2Pooling(nn.Module):

    def __init__(self,
                 spatial_scale,
                 pooled_size,
                 output_dim,
                 no_trans,
                 group_size=1,
                 part_size=None,
                 sample_per_part=4,
                 trans_std=.0):
        super(DCNv2Pooling, self).__init__()
        self.spatial_scale = spatial_scale
        self.pooled_size = pooled_size
        self.output_dim = output_dim
        self.no_trans = no_trans
        self.group_size = group_size
        self.part_size = pooled_size if part_size is None else part_size
        self.sample_per_part = sample_per_part
        self.trans_std = trans_std

    def forward(self, input, rois, offset):
        assert input.shape[1] == self.output_dim
        if self.no_trans:
            offset = input.new()
        return dcn_v2_pooling(input, rois, offset,
                              self.spatial_scale,
                              self.pooled_size,
                              self.output_dim,
                              self.no_trans,
                              self.group_size,
                              self.part_size,
                              self.sample_per_part,
                              self.trans_std)


class DCNPooling(DCNv2Pooling):

    def __init__(self,
                 spatial_scale,
                 pooled_size,
                 output_dim,
                 no_trans,
                 group_size=1,
                 part_size=None,
                 sample_per_part=4,
                 trans_std=.0,
                 deform_fc_dim=1024):
        # don't support non square pooling
        pooled_size = pooled_size[0]
        super(DCNPooling, self).__init__(spatial_scale,
                                         pooled_size,
                                         output_dim,
                                         no_trans,
                                         group_size,
                                         part_size,
                                         sample_per_part,
                                         trans_std)

        self.deform_fc_dim = deform_fc_dim

        if not no_trans:
            self.offset_mask_fc = nn.Sequential(
                nn.Linear(self.pooled_size * self.pooled_size *
                          self.output_dim, self.deform_fc_dim),
                nn.ReLU(inplace=True),
                nn.Linear(self.deform_fc_dim, self.deform_fc_dim),
                nn.ReLU(inplace=True),
                nn.Linear(self.deform_fc_dim, self.pooled_size *
                          self.pooled_size * 3)
            )
            self.offset_mask_fc[4].weight.data.zero_()
            self.offset_mask_fc[4].bias.data.zero_()

    def forward(self, input, rois, debug=False):
        offset = input.new()

        if not self.no_trans:

            # do roi_align first
            n = rois.shape[0]
            roi = dcn_v2_pooling(input, rois, offset,
                                 self.spatial_scale,
                                 self.pooled_size,
                                 self.output_dim,
                                 True,  # no trans
                                 self.group_size,
                                 self.part_size,
                                 self.sample_per_part,
                                 self.trans_std)

            # build mask and offset
            offset_mask = self.offset_mask_fc(roi.view(n, -1))
            offset_mask = offset_mask.view(
                n, 3, self.pooled_size, self.pooled_size)
            o1, o2, mask = torch.chunk(offset_mask, 3, dim=1)
            offset = torch.cat((o1, o2), dim=1)
            mask = torch.sigmoid(mask)

            # do pooling with offset and mask
            return dcn_v2_pooling(input, rois, offset,
                                  self.spatial_scale,
                                  self.pooled_size,
                                  self.output_dim,
                                  self.no_trans,
                                  self.group_size,
                                  self.part_size,
                                  self.sample_per_part,
                                  self.trans_std) * mask
        # only roi_align
        return dcn_v2_pooling(input, rois, offset,
                              self.spatial_scale,
                              self.pooled_size,
                              self.output_dim,
                              self.no_trans,
                              self.group_size,
                              self.part_size,
                              self.sample_per_part,
                              self.trans_std)