File size: 1,204 Bytes
4ea50ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
import torch
from torch import nn


class IOULoss(nn.Module):
    def forward(self, pred, target, weight=None):
        pred_left = pred[:, 0]
        pred_top = pred[:, 1]
        pred_right = pred[:, 2]
        pred_bottom = pred[:, 3]

        target_left = target[:, 0]
        target_top = target[:, 1]
        target_right = target[:, 2]
        target_bottom = target[:, 3]

        target_aera = (target_left + target_right) * \
                      (target_top + target_bottom)
        pred_aera = (pred_left + pred_right) * \
                    (pred_top + pred_bottom)

        w_intersect = torch.min(pred_left, target_left) + \
                      torch.min(pred_right, target_right)
        h_intersect = torch.min(pred_bottom, target_bottom) + \
                      torch.min(pred_top, target_top)

        area_intersect = w_intersect * h_intersect
        area_union = target_aera + pred_aera - area_intersect

        losses = -torch.log((area_intersect + 1.0) / (area_union + 1.0))

        if weight is not None and weight.sum() > 0:
            return (losses * weight).sum() / weight.sum()
        else:
            assert losses.numel() != 0
            return losses.mean()