Spaces:
Runtime error
Runtime error
File size: 24,964 Bytes
4ea50ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 |
"""
FBNet model builder
"""
from __future__ import absolute_import, division, print_function, unicode_literals
import copy
import logging
import math
from collections import OrderedDict
import torch
import torch.nn as nn
from maskrcnn_benchmark.layers import (
BatchNorm2d,
Conv2d,
FrozenBatchNorm2d,
interpolate,
)
from maskrcnn_benchmark.layers.misc import _NewEmptyTensorOp
logger = logging.getLogger(__name__)
def _py2_round(x):
return math.floor(x + 0.5) if x >= 0.0 else math.ceil(x - 0.5)
def _get_divisible_by(num, divisible_by, min_val):
ret = int(num)
if divisible_by > 0 and num % divisible_by != 0:
ret = int((_py2_round(num / divisible_by) or min_val) * divisible_by)
return ret
PRIMITIVES = {
"skip": lambda C_in, C_out, expansion, stride, **kwargs: Identity(
C_in, C_out, stride
),
"ir_k3": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, expansion, stride, **kwargs
),
"ir_k5": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, expansion, stride, kernel=5, **kwargs
),
"ir_k7": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, expansion, stride, kernel=7, **kwargs
),
"ir_k1": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, expansion, stride, kernel=1, **kwargs
),
"shuffle": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, expansion, stride, shuffle_type="mid", pw_group=4, **kwargs
),
"basic_block": lambda C_in, C_out, expansion, stride, **kwargs: CascadeConv3x3(
C_in, C_out, stride
),
"shift_5x5": lambda C_in, C_out, expansion, stride, **kwargs: ShiftBlock5x5(
C_in, C_out, expansion, stride
),
# layer search 2
"ir_k3_e1": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, 1, stride, kernel=3, **kwargs
),
"ir_k3_e3": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, 3, stride, kernel=3, **kwargs
),
"ir_k3_e6": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, 6, stride, kernel=3, **kwargs
),
"ir_k3_s4": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, 4, stride, kernel=3, shuffle_type="mid", pw_group=4, **kwargs
),
"ir_k5_e1": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, 1, stride, kernel=5, **kwargs
),
"ir_k5_e3": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, 3, stride, kernel=5, **kwargs
),
"ir_k5_e6": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, 6, stride, kernel=5, **kwargs
),
"ir_k5_s4": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, 4, stride, kernel=5, shuffle_type="mid", pw_group=4, **kwargs
),
# layer search se
"ir_k3_e1_se": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, 1, stride, kernel=3, se=True, **kwargs
),
"ir_k3_e3_se": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, 3, stride, kernel=3, se=True, **kwargs
),
"ir_k3_e6_se": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, 6, stride, kernel=3, se=True, **kwargs
),
"ir_k3_s4_se": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in,
C_out,
4,
stride,
kernel=3,
shuffle_type="mid",
pw_group=4,
se=True,
**kwargs
),
"ir_k5_e1_se": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, 1, stride, kernel=5, se=True, **kwargs
),
"ir_k5_e3_se": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, 3, stride, kernel=5, se=True, **kwargs
),
"ir_k5_e6_se": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, 6, stride, kernel=5, se=True, **kwargs
),
"ir_k5_s4_se": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in,
C_out,
4,
stride,
kernel=5,
shuffle_type="mid",
pw_group=4,
se=True,
**kwargs
),
# layer search 3 (in addition to layer search 2)
"ir_k3_s2": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, 1, stride, kernel=3, shuffle_type="mid", pw_group=2, **kwargs
),
"ir_k5_s2": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, 1, stride, kernel=5, shuffle_type="mid", pw_group=2, **kwargs
),
"ir_k3_s2_se": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in,
C_out,
1,
stride,
kernel=3,
shuffle_type="mid",
pw_group=2,
se=True,
**kwargs
),
"ir_k5_s2_se": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in,
C_out,
1,
stride,
kernel=5,
shuffle_type="mid",
pw_group=2,
se=True,
**kwargs
),
# layer search 4 (in addition to layer search 3)
"ir_k3_sep": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, expansion, stride, kernel=3, cdw=True, **kwargs
),
"ir_k33_e1": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, 1, stride, kernel=3, cdw=True, **kwargs
),
"ir_k33_e3": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, 3, stride, kernel=3, cdw=True, **kwargs
),
"ir_k33_e6": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, 6, stride, kernel=3, cdw=True, **kwargs
),
# layer search 5 (in addition to layer search 4)
"ir_k7_e1": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, 1, stride, kernel=7, **kwargs
),
"ir_k7_e3": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, 3, stride, kernel=7, **kwargs
),
"ir_k7_e6": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, 6, stride, kernel=7, **kwargs
),
"ir_k7_sep": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, expansion, stride, kernel=7, cdw=True, **kwargs
),
"ir_k7_sep_e1": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, 1, stride, kernel=7, cdw=True, **kwargs
),
"ir_k7_sep_e3": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, 3, stride, kernel=7, cdw=True, **kwargs
),
"ir_k7_sep_e6": lambda C_in, C_out, expansion, stride, **kwargs: IRFBlock(
C_in, C_out, 6, stride, kernel=7, cdw=True, **kwargs
),
}
class Identity(nn.Module):
def __init__(self, C_in, C_out, stride):
super(Identity, self).__init__()
self.conv = (
ConvBNRelu(
C_in,
C_out,
kernel=1,
stride=stride,
pad=0,
no_bias=1,
use_relu="relu",
bn_type="bn",
)
if C_in != C_out or stride != 1
else None
)
def forward(self, x):
if self.conv:
out = self.conv(x)
else:
out = x
return out
class CascadeConv3x3(nn.Sequential):
def __init__(self, C_in, C_out, stride):
assert stride in [1, 2]
ops = [
Conv2d(C_in, C_in, 3, stride, 1, bias=False),
BatchNorm2d(C_in),
nn.ReLU(inplace=True),
Conv2d(C_in, C_out, 3, 1, 1, bias=False),
BatchNorm2d(C_out),
]
super(CascadeConv3x3, self).__init__(*ops)
self.res_connect = (stride == 1) and (C_in == C_out)
def forward(self, x):
y = super(CascadeConv3x3, self).forward(x)
if self.res_connect:
y += x
return y
class Shift(nn.Module):
def __init__(self, C, kernel_size, stride, padding):
super(Shift, self).__init__()
self.C = C
kernel = torch.zeros((C, 1, kernel_size, kernel_size), dtype=torch.float32)
ch_idx = 0
assert stride in [1, 2]
self.stride = stride
self.padding = padding
self.kernel_size = kernel_size
self.dilation = 1
hks = kernel_size // 2
ksq = kernel_size ** 2
for i in range(kernel_size):
for j in range(kernel_size):
if i == hks and j == hks:
num_ch = C // ksq + C % ksq
else:
num_ch = C // ksq
kernel[ch_idx : ch_idx + num_ch, 0, i, j] = 1
ch_idx += num_ch
self.register_parameter("bias", None)
self.kernel = nn.Parameter(kernel, requires_grad=False)
def forward(self, x):
if x.numel() > 0:
return nn.functional.conv2d(
x,
self.kernel,
self.bias,
(self.stride, self.stride),
(self.padding, self.padding),
self.dilation,
self.C, # groups
)
output_shape = [
(i + 2 * p - (di * (k - 1) + 1)) // d + 1
for i, p, di, k, d in zip(
x.shape[-2:],
(self.padding, self.dilation),
(self.dilation, self.dilation),
(self.kernel_size, self.kernel_size),
(self.stride, self.stride),
)
]
output_shape = [x.shape[0], self.C] + output_shape
return _NewEmptyTensorOp.apply(x, output_shape)
class ShiftBlock5x5(nn.Sequential):
def __init__(self, C_in, C_out, expansion, stride):
assert stride in [1, 2]
self.res_connect = (stride == 1) and (C_in == C_out)
C_mid = _get_divisible_by(C_in * expansion, 8, 8)
ops = [
# pw
Conv2d(C_in, C_mid, 1, 1, 0, bias=False),
BatchNorm2d(C_mid),
nn.ReLU(inplace=True),
# shift
Shift(C_mid, 5, stride, 2),
# pw-linear
Conv2d(C_mid, C_out, 1, 1, 0, bias=False),
BatchNorm2d(C_out),
]
super(ShiftBlock5x5, self).__init__(*ops)
def forward(self, x):
y = super(ShiftBlock5x5, self).forward(x)
if self.res_connect:
y += x
return y
class ChannelShuffle(nn.Module):
def __init__(self, groups):
super(ChannelShuffle, self).__init__()
self.groups = groups
def forward(self, x):
"""Channel shuffle: [N,C,H,W] -> [N,g,C/g,H,W] -> [N,C/g,g,H,w] -> [N,C,H,W]"""
N, C, H, W = x.size()
g = self.groups
assert C % g == 0, "Incompatible group size {} for input channel {}".format(
g, C
)
return (
x.view(N, g, int(C / g), H, W)
.permute(0, 2, 1, 3, 4)
.contiguous()
.view(N, C, H, W)
)
class ConvBNRelu(nn.Sequential):
def __init__(
self,
input_depth,
output_depth,
kernel,
stride,
pad,
no_bias,
use_relu,
bn_type,
group=1,
*args,
**kwargs
):
super(ConvBNRelu, self).__init__()
assert use_relu in ["relu", None]
if isinstance(bn_type, (list, tuple)):
assert len(bn_type) == 2
assert bn_type[0] == "gn"
gn_group = bn_type[1]
bn_type = bn_type[0]
assert bn_type in ["bn", "af", "gn", None]
assert stride in [1, 2, 4]
op = Conv2d(
input_depth,
output_depth,
kernel_size=kernel,
stride=stride,
padding=pad,
bias=not no_bias,
groups=group,
*args,
**kwargs
)
nn.init.kaiming_normal_(op.weight, mode="fan_out", nonlinearity="relu")
if op.bias is not None:
nn.init.constant_(op.bias, 0.0)
self.add_module("conv", op)
if bn_type == "bn":
bn_op = BatchNorm2d(output_depth)
elif bn_type == "gn":
bn_op = nn.GroupNorm(num_groups=gn_group, num_channels=output_depth)
elif bn_type == "af":
bn_op = FrozenBatchNorm2d(output_depth)
if bn_type is not None:
self.add_module("bn", bn_op)
if use_relu == "relu":
self.add_module("relu", nn.ReLU(inplace=True))
class SEModule(nn.Module):
reduction = 4
def __init__(self, C):
super(SEModule, self).__init__()
mid = max(C // self.reduction, 8)
conv1 = Conv2d(C, mid, 1, 1, 0)
conv2 = Conv2d(mid, C, 1, 1, 0)
self.op = nn.Sequential(
nn.AdaptiveAvgPool2d(1), conv1, nn.ReLU(inplace=True), conv2, nn.Sigmoid()
)
def forward(self, x):
return x * self.op(x)
class Upsample(nn.Module):
def __init__(self, scale_factor, mode, align_corners=None):
super(Upsample, self).__init__()
self.scale = scale_factor
self.mode = mode
self.align_corners = align_corners
def forward(self, x):
return interpolate(
x, scale_factor=self.scale, mode=self.mode,
align_corners=self.align_corners
)
def _get_upsample_op(stride):
assert (
stride in [1, 2, 4]
or stride in [-1, -2, -4]
or (isinstance(stride, tuple) and all(x in [-1, -2, -4] for x in stride))
)
scales = stride
ret = None
if isinstance(stride, tuple) or stride < 0:
scales = [-x for x in stride] if isinstance(stride, tuple) else -stride
stride = 1
ret = Upsample(scale_factor=scales, mode="nearest", align_corners=None)
return ret, stride
class IRFBlock(nn.Module):
def __init__(
self,
input_depth,
output_depth,
expansion,
stride,
bn_type="bn",
kernel=3,
width_divisor=1,
shuffle_type=None,
pw_group=1,
se=False,
cdw=False,
dw_skip_bn=False,
dw_skip_relu=False,
):
super(IRFBlock, self).__init__()
assert kernel in [1, 3, 5, 7], kernel
self.use_res_connect = stride == 1 and input_depth == output_depth
self.output_depth = output_depth
mid_depth = int(input_depth * expansion)
mid_depth = _get_divisible_by(mid_depth, width_divisor, width_divisor)
# pw
self.pw = ConvBNRelu(
input_depth,
mid_depth,
kernel=1,
stride=1,
pad=0,
no_bias=1,
use_relu="relu",
bn_type=bn_type,
group=pw_group,
)
# negative stride to do upsampling
self.upscale, stride = _get_upsample_op(stride)
# dw
if kernel == 1:
self.dw = nn.Sequential()
elif cdw:
dw1 = ConvBNRelu(
mid_depth,
mid_depth,
kernel=kernel,
stride=stride,
pad=(kernel // 2),
group=mid_depth,
no_bias=1,
use_relu="relu",
bn_type=bn_type,
)
dw2 = ConvBNRelu(
mid_depth,
mid_depth,
kernel=kernel,
stride=1,
pad=(kernel // 2),
group=mid_depth,
no_bias=1,
use_relu="relu" if not dw_skip_relu else None,
bn_type=bn_type if not dw_skip_bn else None,
)
self.dw = nn.Sequential(OrderedDict([("dw1", dw1), ("dw2", dw2)]))
else:
self.dw = ConvBNRelu(
mid_depth,
mid_depth,
kernel=kernel,
stride=stride,
pad=(kernel // 2),
group=mid_depth,
no_bias=1,
use_relu="relu" if not dw_skip_relu else None,
bn_type=bn_type if not dw_skip_bn else None,
)
# pw-linear
self.pwl = ConvBNRelu(
mid_depth,
output_depth,
kernel=1,
stride=1,
pad=0,
no_bias=1,
use_relu=None,
bn_type=bn_type,
group=pw_group,
)
self.shuffle_type = shuffle_type
if shuffle_type is not None:
self.shuffle = ChannelShuffle(pw_group)
self.se4 = SEModule(output_depth) if se else nn.Sequential()
self.output_depth = output_depth
def forward(self, x):
y = self.pw(x)
if self.shuffle_type == "mid":
y = self.shuffle(y)
if self.upscale is not None:
y = self.upscale(y)
y = self.dw(y)
y = self.pwl(y)
if self.use_res_connect:
y += x
y = self.se4(y)
return y
def _expand_block_cfg(block_cfg):
assert isinstance(block_cfg, list)
ret = []
for idx in range(block_cfg[2]):
cur = copy.deepcopy(block_cfg)
cur[2] = 1
cur[3] = 1 if idx >= 1 else cur[3]
ret.append(cur)
return ret
def expand_stage_cfg(stage_cfg):
""" For a single stage """
assert isinstance(stage_cfg, list)
ret = []
for x in stage_cfg:
ret += _expand_block_cfg(x)
return ret
def expand_stages_cfg(stage_cfgs):
""" For a list of stages """
assert isinstance(stage_cfgs, list)
ret = []
for x in stage_cfgs:
ret.append(expand_stage_cfg(x))
return ret
def _block_cfgs_to_list(block_cfgs):
assert isinstance(block_cfgs, list)
ret = []
for stage_idx, stage in enumerate(block_cfgs):
stage = expand_stage_cfg(stage)
for block_idx, block in enumerate(stage):
cur = {"stage_idx": stage_idx, "block_idx": block_idx, "block": block}
ret.append(cur)
return ret
def _add_to_arch(arch, info, name):
""" arch = [{block_0}, {block_1}, ...]
info = [
# stage 0
[
block0_info,
block1_info,
...
], ...
]
convert to:
arch = [
{
block_0,
name: block0_info,
},
{
block_1,
name: block1_info,
}, ...
]
"""
assert isinstance(arch, list) and all(isinstance(x, dict) for x in arch)
assert isinstance(info, list) and all(isinstance(x, list) for x in info)
idx = 0
for stage_idx, stage in enumerate(info):
for block_idx, block in enumerate(stage):
assert (
arch[idx]["stage_idx"] == stage_idx
and arch[idx]["block_idx"] == block_idx
), "Index ({}, {}) does not match for block {}".format(
stage_idx, block_idx, arch[idx]
)
assert name not in arch[idx]
arch[idx][name] = block
idx += 1
def unify_arch_def(arch_def):
""" unify the arch_def to:
{
...,
"arch": [
{
"stage_idx": idx,
"block_idx": idx,
...
},
{}, ...
]
}
"""
ret = copy.deepcopy(arch_def)
assert "block_cfg" in arch_def and "stages" in arch_def["block_cfg"]
assert "stages" not in ret
# copy 'first', 'last' etc. inside arch_def['block_cfg'] to ret
ret.update({x: arch_def["block_cfg"][x] for x in arch_def["block_cfg"]})
ret["stages"] = _block_cfgs_to_list(arch_def["block_cfg"]["stages"])
del ret["block_cfg"]
assert "block_op_type" in arch_def
_add_to_arch(ret["stages"], arch_def["block_op_type"], "block_op_type")
del ret["block_op_type"]
return ret
def get_num_stages(arch_def):
ret = 0
for x in arch_def["stages"]:
ret = max(x["stage_idx"], ret)
ret = ret + 1
return ret
def get_blocks(arch_def, stage_indices=None, block_indices=None):
ret = copy.deepcopy(arch_def)
ret["stages"] = []
for block in arch_def["stages"]:
keep = True
if stage_indices not in (None, []) and block["stage_idx"] not in stage_indices:
keep = False
if block_indices not in (None, []) and block["block_idx"] not in block_indices:
keep = False
if keep:
ret["stages"].append(block)
return ret
class FBNetBuilder(object):
def __init__(
self,
width_ratio,
bn_type="bn",
width_divisor=1,
dw_skip_bn=False,
dw_skip_relu=False,
):
self.width_ratio = width_ratio
self.last_depth = -1
self.bn_type = bn_type
self.width_divisor = width_divisor
self.dw_skip_bn = dw_skip_bn
self.dw_skip_relu = dw_skip_relu
def add_first(self, stage_info, dim_in=3, pad=True):
# stage_info: [c, s, kernel]
assert len(stage_info) >= 2
channel = stage_info[0]
stride = stage_info[1]
out_depth = self._get_divisible_width(int(channel * self.width_ratio))
kernel = 3
if len(stage_info) > 2:
kernel = stage_info[2]
out = ConvBNRelu(
dim_in,
out_depth,
kernel=kernel,
stride=stride,
pad=kernel // 2 if pad else 0,
no_bias=1,
use_relu="relu",
bn_type=self.bn_type,
)
self.last_depth = out_depth
return out
def add_blocks(self, blocks):
""" blocks: [{}, {}, ...]
"""
assert isinstance(blocks, list) and all(
isinstance(x, dict) for x in blocks
), blocks
modules = OrderedDict()
for block in blocks:
stage_idx = block["stage_idx"]
block_idx = block["block_idx"]
block_op_type = block["block_op_type"]
tcns = block["block"]
n = tcns[2]
assert n == 1
nnblock = self.add_ir_block(tcns, [block_op_type])
nn_name = "xif{}_{}".format(stage_idx, block_idx)
assert nn_name not in modules
modules[nn_name] = nnblock
ret = nn.Sequential(modules)
return ret
def add_last(self, stage_info):
""" skip last layer if channel_scale == 0
use the same output channel if channel_scale < 0
"""
assert len(stage_info) == 2
channels = stage_info[0]
channel_scale = stage_info[1]
if channel_scale == 0.0:
return nn.Sequential()
if channel_scale > 0:
last_channel = (
int(channels * self.width_ratio) if self.width_ratio > 1.0 else channels
)
last_channel = int(last_channel * channel_scale)
else:
last_channel = int(self.last_depth * (-channel_scale))
last_channel = self._get_divisible_width(last_channel)
if last_channel == 0:
return nn.Sequential()
dim_in = self.last_depth
ret = ConvBNRelu(
dim_in,
last_channel,
kernel=1,
stride=1,
pad=0,
no_bias=1,
use_relu="relu",
bn_type=self.bn_type,
)
self.last_depth = last_channel
return ret
# def add_final_pool(self, model, blob_in, kernel_size):
# ret = model.AveragePool(blob_in, "final_avg", kernel=kernel_size, stride=1)
# return ret
def _add_ir_block(
self, dim_in, dim_out, stride, expand_ratio, block_op_type, **kwargs
):
ret = PRIMITIVES[block_op_type](
dim_in,
dim_out,
expansion=expand_ratio,
stride=stride,
bn_type=self.bn_type,
width_divisor=self.width_divisor,
dw_skip_bn=self.dw_skip_bn,
dw_skip_relu=self.dw_skip_relu,
**kwargs
)
return ret, ret.output_depth
def add_ir_block(self, tcns, block_op_types, **kwargs):
t, c, n, s = tcns
assert n == 1
out_depth = self._get_divisible_width(int(c * self.width_ratio))
dim_in = self.last_depth
op, ret_depth = self._add_ir_block(
dim_in,
out_depth,
stride=s,
expand_ratio=t,
block_op_type=block_op_types[0],
**kwargs
)
self.last_depth = ret_depth
return op
def _get_divisible_width(self, width):
ret = _get_divisible_by(int(width), self.width_divisor, self.width_divisor)
return ret
|