File size: 10,209 Bytes
4ea50ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import math

import numpy as np
import torch
from torch import nn

from maskrcnn_benchmark.structures.bounding_box import BoxList


class BufferList(nn.Module):
    """
    Similar to nn.ParameterList, but for buffers
    """

    def __init__(self, buffers=None):
        super(BufferList, self).__init__()
        if buffers is not None:
            self.extend(buffers)

    def extend(self, buffers):
        offset = len(self)
        for i, buffer in enumerate(buffers):
            self.register_buffer(str(offset + i), buffer)
        return self

    def __len__(self):
        return len(self._buffers)

    def __iter__(self):
        return iter(self._buffers.values())


class AnchorGenerator(nn.Module):
    """
    For a set of image sizes and feature maps, computes a set
    of anchors
    """
    def __init__(
        self,
        sizes=(128, 256, 512),   # 32, 64, 128, 256, 512
        aspect_ratios=(0.5, 1.0, 2.0),   # 0.25, 0.5, 1.0, 2.0, 4.0
        anchor_strides=(8, 16, 32),   # 4, 8, 16, 32, 64
        straddle_thresh=0,   # 0
    ):
        super(AnchorGenerator, self).__init__()

        if len(anchor_strides) == 1:
            anchor_stride = anchor_strides[0]
            cell_anchors = [
                generate_anchors(anchor_stride, sizes, aspect_ratios).float()
            ]
        else:

            # This step is done

            if len(anchor_strides) != len(sizes):
                raise RuntimeError("FPN should have #anchor_strides == #sizes")

            cell_anchors = [
                generate_anchors(
                    anchor_stride,
                    size if isinstance(size, (tuple, list)) else (size,),
                    aspect_ratios
                ).float()
                for anchor_stride, size in zip(anchor_strides, sizes)
            ]
        self.strides = anchor_strides
        self.cell_anchors = BufferList(cell_anchors)
        self.straddle_thresh = straddle_thresh

    def num_anchors_per_location(self):
        return [len(cell_anchors) for cell_anchors in self.cell_anchors]

    def grid_anchors(self, grid_sizes):
        anchors = []
        for size, stride, base_anchors in zip(
            grid_sizes, self.strides, self.cell_anchors
        ):
            grid_height, grid_width = size
            device = base_anchors.device
            shifts_x = torch.arange(
                0, grid_width * stride, step=stride, dtype=torch.float32, device=device
            )

            shifts_y = torch.arange(
                0, grid_height * stride, step=stride, dtype=torch.float32, device=device
            )
            shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x)
            shift_x = shift_x.reshape(-1)
            shift_y = shift_y.reshape(-1)
            shifts = torch.stack((shift_x, shift_y, shift_x, shift_y), dim=1)

            anchors.append(
                (shifts.view(-1, 1, 4) + base_anchors.view(1, -1, 4)).reshape(-1, 4)
            )

        return anchors

    def add_visibility_to(self, boxlist):
        image_width, image_height = boxlist.size
        anchors = boxlist.bbox
        if self.straddle_thresh >= 0:
            inds_inside = (
                (anchors[..., 0] >= -self.straddle_thresh)
                & (anchors[..., 1] >= -self.straddle_thresh)
                & (anchors[..., 2] < image_width + self.straddle_thresh)
                & (anchors[..., 3] < image_height + self.straddle_thresh)
            )
        else:
            device = anchors.device
            inds_inside = torch.ones(anchors.shape[0], dtype=torch.uint8, device=device)
        boxlist.add_field("visibility", inds_inside)

    def forward(self, image_list, feature_maps):
        grid_sizes = [feature_map.shape[-2:] for feature_map in feature_maps]  #  size of features
        anchors_over_all_feature_maps = self.grid_anchors(grid_sizes)
        anchors = []
        for i, (image_height, image_width) in enumerate(image_list.image_sizes):
            anchors_in_image = []
            for anchors_per_feature_map in anchors_over_all_feature_maps:
                boxlist = BoxList(
                    anchors_per_feature_map, (image_width, image_height), mode="xyxy"
                )
                self.add_visibility_to(boxlist)
                anchors_in_image.append(boxlist)
            anchors.append(anchors_in_image)
        return anchors  # [image,number,[n,4]]


def make_anchor_generator(config):
    anchor_sizes = config.MODEL.RPN.ANCHOR_SIZES  # 32, 64, 128, 256, 512
    aspect_ratios = config.MODEL.RPN.ASPECT_RATIOS  # 0.25, 0.5, 1.0, 2.0, 4.0
    anchor_stride = config.MODEL.RPN.ANCHOR_STRIDE  # 4, 8, 16, 32, 64
    straddle_thresh = config.MODEL.RPN.STRADDLE_THRESH  #0

    if config.MODEL.RPN.USE_FPN:   #  This step is done
        assert len(anchor_stride) == len(
            anchor_sizes
        ), "FPN should have len(ANCHOR_STRIDE) == len(ANCHOR_SIZES)"
    else:
        assert len(anchor_stride) == 1, "Non-FPN should have a single ANCHOR_STRIDE"
    anchor_generator = AnchorGenerator(
        anchor_sizes, aspect_ratios, anchor_stride, straddle_thresh
    )
    return anchor_generator


def make_anchor_generator_retinanet(config):
    anchor_sizes = config.MODEL.RETINANET.ANCHOR_SIZES
    aspect_ratios = config.MODEL.RETINANET.ASPECT_RATIOS
    anchor_strides = config.MODEL.RETINANET.ANCHOR_STRIDES
    straddle_thresh = config.MODEL.RETINANET.STRADDLE_THRESH
    octave = config.MODEL.RETINANET.OCTAVE
    scales_per_octave = config.MODEL.RETINANET.SCALES_PER_OCTAVE

    assert len(anchor_strides) == len(anchor_sizes), "Only support FPN now"
    new_anchor_sizes = []
    for size in anchor_sizes:
        per_layer_anchor_sizes = []
        for scale_per_octave in range(scales_per_octave):
            octave_scale = octave ** (scale_per_octave / float(scales_per_octave))
            per_layer_anchor_sizes.append(octave_scale * size)
        new_anchor_sizes.append(tuple(per_layer_anchor_sizes))

    anchor_generator = AnchorGenerator(
        tuple(new_anchor_sizes), aspect_ratios, anchor_strides, straddle_thresh
    )
    return anchor_generator

# Copyright (c) 2017-present, Facebook, Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
#
# Based on:
# --------------------------------------------------------
# Faster R-CNN
# Copyright (c) 2015 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Written by Ross Girshick and Sean Bell
# --------------------------------------------------------


# Verify that we compute the same anchors as Shaoqing's matlab implementation:
#
#    >> load output/rpn_cachedir/faster_rcnn_VOC2007_ZF_stage1_rpn/anchors.mat
#    >> anchors
#
#    anchors =
#
#       -83   -39   100    56
#      -175   -87   192   104
#      -359  -183   376   200
#       -55   -55    72    72
#      -119  -119   136   136
#      -247  -247   264   264
#       -35   -79    52    96
#       -79  -167    96   184
#      -167  -343   184   360

# array([[ -83.,  -39.,  100.,   56.],
#        [-175.,  -87.,  192.,  104.],
#        [-359., -183.,  376.,  200.],
#        [ -55.,  -55.,   72.,   72.],
#        [-119., -119.,  136.,  136.],
#        [-247., -247.,  264.,  264.],
#        [ -35.,  -79.,   52.,   96.],
#        [ -79., -167.,   96.,  184.],
#        [-167., -343.,  184.,  360.]])


def generate_anchors(
    stride=16, sizes=(32, 64, 128, 256, 512), aspect_ratios=(0.5, 1, 2)
):
    """Generates a matrix of anchor boxes in (x1, y1, x2, y2) format. Anchors
    are centered on stride / 2, have (approximate) sqrt areas of the specified
    sizes, and aspect ratios as given.
    """
    return _generate_anchors(
        stride,
        np.array(sizes, dtype=np.float) / stride,
        np.array(aspect_ratios, dtype=np.float),
    )


def _generate_anchors(base_size, scales, aspect_ratios):
    """Generate anchor (reference) windows by enumerating aspect ratios X
    scales wrt a reference (0, 0, base_size - 1, base_size - 1) window.
    """
    anchor = np.array([1, 1, base_size, base_size], dtype=np.float) - 1
    anchors = _ratio_enum(anchor, aspect_ratios)
    anchors = np.vstack(
        [_scale_enum(anchors[i, :], scales) for i in range(anchors.shape[0])]
    )
    return torch.from_numpy(anchors)


def _whctrs(anchor):
    """Return width, height, x center, and y center for an anchor (window)."""
    w = anchor[2] - anchor[0] + 1
    h = anchor[3] - anchor[1] + 1
    x_ctr = anchor[0] + 0.5 * (w - 1)
    y_ctr = anchor[1] + 0.5 * (h - 1)
    return w, h, x_ctr, y_ctr


def _mkanchors(ws, hs, x_ctr, y_ctr):
    """Given a vector of widths (ws) and heights (hs) around a center
    (x_ctr, y_ctr), output a set of anchors (windows).
    """
    ws = ws[:, np.newaxis]
    hs = hs[:, np.newaxis]
    anchors = np.hstack(
        (
            x_ctr - 0.5 * (ws - 1),
            y_ctr - 0.5 * (hs - 1),
            x_ctr + 0.5 * (ws - 1),
            y_ctr + 0.5 * (hs - 1),
        )
    )
    return anchors


def _ratio_enum(anchor, ratios):
    """Enumerate a set of anchors for each aspect ratio wrt an anchor."""
    w, h, x_ctr, y_ctr = _whctrs(anchor)
    size = w * h
    size_ratios = size / ratios
    ws = np.round(np.sqrt(size_ratios))
    hs = np.round(ws * ratios)
    anchors = _mkanchors(ws, hs, x_ctr, y_ctr)
    return anchors


def _scale_enum(anchor, scales):
    """Enumerate a set of anchors for each scale wrt an anchor."""
    w, h, x_ctr, y_ctr = _whctrs(anchor)
    ws = w * scales
    hs = h * scales
    anchors = _mkanchors(ws, hs, x_ctr, y_ctr)
    return anchors