File size: 6,987 Bytes
4ea50ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import math
import torch
import torch.nn.functional as F
from torch import nn

from .inference import make_fcos_postprocessor
from .loss import make_fcos_loss_evaluator

from maskrcnn_benchmark.layers import Scale


class FCOSHead(torch.nn.Module):
    def __init__(self, cfg, in_channels):
        """
        Arguments:
            in_channels (int): number of channels of the input feature
        """
        super(FCOSHead, self).__init__()
        # TODO: Implement the sigmoid version first.
        num_classes = cfg.MODEL.FCOS.NUM_CLASSES - 1

        cls_tower = []
        bbox_tower = []
        for i in range(cfg.MODEL.FCOS.NUM_CONVS):
            cls_tower.append(
                nn.Conv2d(
                    in_channels,
                    in_channels,
                    kernel_size=3,
                    stride=1,
                    padding=1
                )
            )
            cls_tower.append(nn.GroupNorm(32, in_channels))
            cls_tower.append(nn.ReLU())
            bbox_tower.append(
                nn.Conv2d(
                    in_channels,
                    in_channels,
                    kernel_size=3,
                    stride=1,
                    padding=1
                )
            )
            bbox_tower.append(nn.GroupNorm(32, in_channels))
            bbox_tower.append(nn.ReLU())

        self.add_module('cls_tower', nn.Sequential(*cls_tower))
        self.add_module('bbox_tower', nn.Sequential(*bbox_tower))
        self.cls_logits = nn.Conv2d(
            in_channels, num_classes, kernel_size=3, stride=1,
            padding=1
        )
        self.bbox_pred = nn.Conv2d(
            in_channels, 4, kernel_size=3, stride=1,
            padding=1
        )
        self.centerness = nn.Conv2d(
            in_channels, 1, kernel_size=3, stride=1,
            padding=1
        )

        # initialization
        for modules in [self.cls_tower, self.bbox_tower,
                        self.cls_logits, self.bbox_pred,
                        self.centerness]:
            for l in modules.modules():
                if isinstance(l, nn.Conv2d):
                    torch.nn.init.normal_(l.weight, std=0.01)
                    torch.nn.init.constant_(l.bias, 0)

        # initialize the bias for focal loss
        prior_prob = cfg.MODEL.FCOS.PRIOR_PROB
        bias_value = -math.log((1 - prior_prob) / prior_prob)
        torch.nn.init.constant_(self.cls_logits.bias, bias_value)

        self.scales = nn.ModuleList([Scale(init_value=1.0) for _ in range(5)])

    def forward(self, x):
        logits = []
        bbox_reg = []
        centerness = []
        for l, feature in enumerate(x):
            cls_tower = self.cls_tower(feature)
            logits.append(self.cls_logits(cls_tower))
            centerness.append(self.centerness(cls_tower))
            bbox_reg.append(torch.exp(self.scales[l](
                self.bbox_pred(self.bbox_tower(feature))
            )))
        return logits, bbox_reg, centerness


class FCOSModule(torch.nn.Module):
    """
    Module for FCOS computation. Takes feature maps from the backbone and
    FCOS outputs and losses. Only Test on FPN now.
    """

    def __init__(self, cfg, in_channels):
        super(FCOSModule, self).__init__()

        self.cfg = cfg.clone()

        head = FCOSHead(cfg, in_channels)

        box_selector_train = make_fcos_postprocessor(cfg, is_train=True)
        box_selector_test = make_fcos_postprocessor(cfg)

        loss_evaluator = make_fcos_loss_evaluator(cfg)
        self.head = head
        self.box_selector_train = box_selector_train
        self.box_selector_test = box_selector_test
        self.loss_evaluator = loss_evaluator
        self.fpn_strides = cfg.MODEL.FCOS.FPN_STRIDES

    def forward(self, images, features, targets=None):
        """
        Arguments:
            images (ImageList): images for which we want to compute the predictions
            features (list[Tensor]): features computed from the images that are
                used for computing the predictions. Each tensor in the list
                correspond to different feature levels
            targets (list[BoxList): ground-truth boxes present in the image (optional)

        Returns:
            boxes (list[BoxList]): the predicted boxes from the RPN, one BoxList per
                image.
            losses (dict[Tensor]): the losses for the model during training. During
                testing, it is an empty dict.
        """
        box_cls, box_regression, centerness = self.head(features)
        locations = self.compute_locations(features)
 
        if self.training:
            return self._forward_train(
                locations, box_cls,
                box_regression,
                centerness, targets, images.image_sizes
            )
        else:
            return self._forward_test(
                locations, box_cls, box_regression,
                centerness, images.image_sizes
            )

    def _forward_train(self, locations, box_cls, box_regression,
                       centerness, targets, image_sizes):
        loss_box_cls, loss_box_reg, loss_centerness = self.loss_evaluator(
            locations, box_cls, box_regression, centerness, targets
        )
        if self.cfg.MODEL.RPN_ONLY:
            boxes = None
        else:
            with torch.no_grad():
                boxes = self.box_selector_train(
                    locations, box_cls, box_regression,
                    centerness, image_sizes)
        losses = {
            "loss_cls": loss_box_cls,
            "loss_reg": loss_box_reg,
            "loss_centerness": loss_centerness
        }
        return boxes, losses

    def _forward_test(self, locations, box_cls, box_regression, centerness, image_sizes):
        boxes = self.box_selector_test(
            locations, box_cls, box_regression, 
            centerness, image_sizes
        )
        return boxes, {}

    def compute_locations(self, features):
        locations = []
        for level, feature in enumerate(features):
            h, w = feature.size()[-2:]
            locations_per_level = self.compute_locations_per_level(
                h, w, self.fpn_strides[level],
                feature.device
            )
            locations.append(locations_per_level)
        return locations

    def compute_locations_per_level(self, h, w, stride, device):
        shifts_x = torch.arange(
            0, w * stride, step=stride,
            dtype=torch.float32, device=device
        )
        shifts_y = torch.arange(
            0, h * stride, step=stride,
            dtype=torch.float32, device=device
        )
        shift_y, shift_x = torch.meshgrid(shifts_y, shifts_x)
        shift_x = shift_x.reshape(-1)
        shift_y = shift_y.reshape(-1)
        locations = torch.stack((shift_x, shift_y), dim=1) + stride // 2
        return locations

def build_fcos(cfg, in_channels):
    return FCOSModule(cfg, in_channels)