File size: 7,718 Bytes
4ea50ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
"""
This file contains specific functions for computing losses of FCOS
file
"""

import torch
from torch.nn import functional as F
from torch import nn

from ..utils import concat_box_prediction_layers
from maskrcnn_benchmark.layers import IOULoss
from maskrcnn_benchmark.layers import SigmoidFocalLoss
from maskrcnn_benchmark.modeling.matcher import Matcher
from maskrcnn_benchmark.modeling.utils import cat
from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou
from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist


INF = 100000000


class FCOSLossComputation(object):
    """
    This class computes the FCOS losses.
    """

    def __init__(self, cfg):
        self.cls_loss_func = SigmoidFocalLoss(
            cfg.MODEL.FCOS.LOSS_GAMMA,
            cfg.MODEL.FCOS.LOSS_ALPHA
        )
        # we make use of IOU Loss for bounding boxes regression,
        # but we found that L1 in log scale can yield a similar performance
        self.box_reg_loss_func = IOULoss()
        self.centerness_loss_func = nn.BCEWithLogitsLoss()
        # generate sizes of interest
        soi = []
        prev_size = -1
        for s in cfg.MODEL.FCOS.SIZES_OF_INTEREST:
            soi.append([prev_size, s])
            prev_size = s
        soi.append([prev_size, INF])
        self.object_sizes_of_interest = soi

    def prepare_targets(self, points, targets):
        object_sizes_of_interest = self.object_sizes_of_interest
        expanded_object_sizes_of_interest = []
        for l, points_per_level in enumerate(points):
            object_sizes_of_interest_per_level = \
                points_per_level.new_tensor(object_sizes_of_interest[l])
            expanded_object_sizes_of_interest.append(
                object_sizes_of_interest_per_level[None].expand(len(points_per_level), -1)
            )

        expanded_object_sizes_of_interest = torch.cat(expanded_object_sizes_of_interest, dim=0)
        num_points_per_level = [len(points_per_level) for points_per_level in points]
        points_all_level = torch.cat(points, dim=0)
        labels, reg_targets = self.compute_targets_for_locations(
            points_all_level, targets, expanded_object_sizes_of_interest
        )

        for i in range(len(labels)):
            labels[i] = torch.split(labels[i], num_points_per_level, dim=0)
            reg_targets[i] = torch.split(reg_targets[i], num_points_per_level, dim=0)

        labels_level_first = []
        reg_targets_level_first = []
        for level in range(len(points)):
            labels_level_first.append(
                torch.cat([labels_per_im[level] for labels_per_im in labels], dim=0)
            )
            reg_targets_level_first.append(
                torch.cat([reg_targets_per_im[level] for reg_targets_per_im in reg_targets], dim=0)
            )

        return labels_level_first, reg_targets_level_first

    def compute_targets_for_locations(self, locations, targets, object_sizes_of_interest):
        labels = []
        reg_targets = []
        xs, ys = locations[:, 0], locations[:, 1]

        for im_i in range(len(targets)):
            targets_per_im = targets[im_i]
            assert targets_per_im.mode == "xyxy"
            bboxes = targets_per_im.bbox
            labels_per_im = targets_per_im.get_field("labels")
            area = targets_per_im.area()

            l = xs[:, None] - bboxes[:, 0][None]
            t = ys[:, None] - bboxes[:, 1][None]
            r = bboxes[:, 2][None] - xs[:, None]
            b = bboxes[:, 3][None] - ys[:, None]
            reg_targets_per_im = torch.stack([l, t, r, b], dim=2)

            is_in_boxes = reg_targets_per_im.min(dim=2)[0] > 0

            max_reg_targets_per_im = reg_targets_per_im.max(dim=2)[0]
            # limit the regression range for each location
            is_cared_in_the_level = \
                (max_reg_targets_per_im >= object_sizes_of_interest[:, [0]]) & \
                (max_reg_targets_per_im <= object_sizes_of_interest[:, [1]])

            locations_to_gt_area = area[None].repeat(len(locations), 1)
            locations_to_gt_area[is_in_boxes == 0] = INF
            locations_to_gt_area[is_cared_in_the_level == 0] = INF

            # if there are still more than one objects for a location,
            # we choose the one with minimal area
            locations_to_min_aera, locations_to_gt_inds = locations_to_gt_area.min(dim=1)

            reg_targets_per_im = reg_targets_per_im[range(len(locations)), locations_to_gt_inds]
            labels_per_im = labels_per_im[locations_to_gt_inds]
            labels_per_im[locations_to_min_aera == INF] = 0

            labels.append(labels_per_im)
            reg_targets.append(reg_targets_per_im)

        return labels, reg_targets

    def compute_centerness_targets(self, reg_targets):
        left_right = reg_targets[:, [0, 2]]
        top_bottom = reg_targets[:, [1, 3]]
        centerness = (left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * \
                      (top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0])
        return torch.sqrt(centerness)

    def __call__(self, locations, box_cls, box_regression, centerness, targets):
        """
        Arguments:
            locations (list[BoxList])
            box_cls (list[Tensor])
            box_regression (list[Tensor])
            centerness (list[Tensor])
            targets (list[BoxList])

        Returns:
            cls_loss (Tensor)
            reg_loss (Tensor)
            centerness_loss (Tensor)
        """
        N = box_cls[0].size(0)
        num_classes = box_cls[0].size(1)
        labels, reg_targets = self.prepare_targets(locations, targets)

        box_cls_flatten = []
        box_regression_flatten = []
        centerness_flatten = []
        labels_flatten = []
        reg_targets_flatten = []
        for l in range(len(labels)):
            box_cls_flatten.append(box_cls[l].permute(0, 2, 3, 1).reshape(-1, num_classes))
            box_regression_flatten.append(box_regression[l].permute(0, 2, 3, 1).reshape(-1, 4))
            labels_flatten.append(labels[l].reshape(-1))
            reg_targets_flatten.append(reg_targets[l].reshape(-1, 4))
            centerness_flatten.append(centerness[l].reshape(-1))

        box_cls_flatten = torch.cat(box_cls_flatten, dim=0)
        box_regression_flatten = torch.cat(box_regression_flatten, dim=0)
        centerness_flatten = torch.cat(centerness_flatten, dim=0)
        labels_flatten = torch.cat(labels_flatten, dim=0)
        reg_targets_flatten = torch.cat(reg_targets_flatten, dim=0)

        pos_inds = torch.nonzero(labels_flatten > 0).squeeze(1)
        cls_loss = self.cls_loss_func(
            box_cls_flatten,
            labels_flatten.int()
        ) / (pos_inds.numel() + N)  # add N to avoid dividing by a zero

        box_regression_flatten = box_regression_flatten[pos_inds]
        reg_targets_flatten = reg_targets_flatten[pos_inds]
        centerness_flatten = centerness_flatten[pos_inds]

        if pos_inds.numel() > 0:
            centerness_targets = self.compute_centerness_targets(reg_targets_flatten)
            reg_loss = self.box_reg_loss_func(
                box_regression_flatten,
                reg_targets_flatten,
                centerness_targets
            )
            centerness_loss = self.centerness_loss_func(
                centerness_flatten,
                centerness_targets
            )
        else:
            reg_loss = box_regression_flatten.sum()
            centerness_loss = centerness_flatten.sum()

        return cls_loss, reg_loss, centerness_loss


def make_fcos_loss_evaluator(cfg):
    loss_evaluator = FCOSLossComputation(cfg)
    return loss_evaluator