Cyril666's picture
First model version
4ea50ff
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
from torch import nn
from maskrcnn_benchmark.structures.bounding_box import BoxList
from .roi_boundary_feature_extractors import make_roi_boundary_feature_extractor
from .roi_boundary_predictors import make_roi_boundary_predictor
from .inference import make_roi_boundary_post_processor
from .loss import make_roi_boundary_loss_evaluator
def keep_only_positive_boxes(boxes):
"""
Given a set of BoxList containing the `labels` field,
return a set of BoxList for which `labels > 0`.
Arguments:
boxes (list of BoxList)
"""
assert isinstance(boxes, (list, tuple))
assert isinstance(boxes[0], BoxList)
assert boxes[0].has_field("labels")
positive_boxes = []
positive_inds = []
num_boxes = 0
for boxes_per_image in boxes:
labels = boxes_per_image.get_field("labels")
inds_mask = labels > 0
inds = inds_mask.nonzero().squeeze(1)
positive_boxes.append(boxes_per_image[inds])
positive_inds.append(inds_mask)
return positive_boxes, positive_inds
def keep_only_positive_boxes(boxes):
"""
Given a set of BoxList containing the `labels` field,
return a set of BoxList for which `labels > 0`.
Arguments:
boxes (list of BoxList)
"""
assert isinstance(boxes, (list, tuple))
assert isinstance(boxes[0], BoxList)
assert boxes[0].has_field("labels")
positive_boxes = []
positive_inds = []
num_boxes = 0
for boxes_per_image in boxes:
labels = boxes_per_image.get_field("labels")
inds_mask = labels > 0
inds = inds_mask.nonzero().squeeze(1)
positive_boxes.append(boxes_per_image[inds])
positive_inds.append(inds_mask)
return positive_boxes, positive_inds
class ROIBOHead(torch.nn.Module):
def __init__(self, cfg, in_channels):
super(ROIBOHead, self).__init__()
self.cfg = cfg.clone()
self.feature_extractor = make_roi_boundary_feature_extractor(cfg, in_channels)
self.predictor = make_roi_boundary_predictor(cfg)
self.post_processor = make_roi_boundary_post_processor(cfg)
self.loss_evaluator = make_roi_boundary_loss_evaluator(cfg)
def forward(self, features, proposals, targets=None):
"""
Arguments:
features (list[Tensor]): feature-maps from possibly several levels
proposals (list[BoxList]): proposal boxes
targets (list[BoxList], optional): the ground-truth targets.
Returns:
x (Tensor): the result of the feature extractor
proposals (list[BoxList]): during training, the original proposals
are returned. During testing, the predicted boxlists are returned
with the `mask` field set
losses (dict[Tensor]): During training, returns the losses for the
head. During testing, returns an empty dict.
"""
if self.training:
# during training, only focus on positive boxes
with torch.no_grad():
# proposals = self.loss_evaluator.subsample(proposals, targets)
all_proposals = proposals
proposals, positive_inds = keep_only_positive_boxes(proposals)
x = self.feature_extractor(features, proposals)
outputs_x, outputs_y= self.predictor(x)
if not self.training:
result = self.post_processor(outputs_x, outputs_y, proposals)
return x, result, {}, {}, {}
loss_bo, loss_x, loss_y = self.loss_evaluator(proposals, outputs_x, outputs_y, targets)
return x, proposals, dict(loss_bo=loss_bo), dict(loss_bo_x=loss_x), dict(loss_bo_y=loss_y)
def build_roi_boundary_head(cfg, in_channels):
return ROIBOHead(cfg, in_channels)