Cyril666's picture
First model version
4ea50ff
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
from torch.nn import functional as F
from maskrcnn_benchmark.layers import smooth_l1_loss
from maskrcnn_benchmark.modeling.matcher import Matcher
from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou
from maskrcnn_benchmark.modeling.utils import cat
from maskrcnn_benchmark.modeling.balanced_positive_negative_sampler import (
BalancedPositiveNegativeSampler
)
# import torch import torch.nn as nn
from maskrcnn_benchmark.structures.ke import kes_to_heat_map
import numpy as np
import os, time
import cv2
DEBUG = 0
from scipy.ndimage.morphology import distance_transform_edt
def onehot_to_binary_edges(mask, radius):
"""
Converts a segmentation mask (K,H,W) to a binary edgemap (1,H,W)
"""
if radius < 0:
return mask
# We need to pad the borders for boundary conditions
mask = np.pad(mask, ((1, 1), (1, 1)), mode='constant', constant_values=0)
mask = distance_transform_edt(mask)
mask = mask[1:-1, 1:-1]
mask[mask > radius] = 0
mask = (mask > 0).astype(np.uint8)
return mask
def project_masks_on_boxes(segmentation_masks, proposals, discretization_size):
"""
Given segmentation masks and the bounding boxes corresponding
to the location of the masks in the image, this function
crops and resizes the masks in the position defined by the
boxes. This prepares the masks for them to be fed to the
loss computation as the targets.
Arguments:
segmentation_masks: an instance of SegmentationMask
proposals: an instance of BoxList
"""
masks = []
M = discretization_size
device = proposals.bbox.device
proposals = proposals.convert("xyxy")
assert segmentation_masks.size == proposals.size, "{}, {}".format(
segmentation_masks, proposals
)
# FIXME: CPU computation bottleneck, this should be parallelized
proposals = proposals.bbox.to(torch.device("cpu"))
for segmentation_mask, proposal in zip(segmentation_masks, proposals):
# crop the masks, resize them to the desired resolution and
# then convert them to the tensor representation.
cropped_mask = segmentation_mask.crop(proposal)
scaled_mask = cropped_mask.resize((M, M))
mask = scaled_mask.get_mask_tensor()
mask = mask.numpy().astype(np.uint8)
mask = onehot_to_binary_edges(mask, 2)
mask = torch.from_numpy(mask)
masks.append(mask)
if len(masks) == 0:
return torch.empty(0, dtype=torch.float32, device=device)
return torch.stack(masks, dim=0).to(device, dtype=torch.float32)
def project_kes_to_heatmap(kes, mty, proposals, discretization_size):
proposals = proposals.convert('xyxy')
out_x, out_y, valid_x, valid_y, out_mty, valid_mty = kes_to_heat_map(kes.kes_x, kes.kes_y, mty.mty, proposals.bbox, discretization_size)
return out_x, out_y, valid_x, valid_y, out_mty, valid_mty
def _within_box(points_x, points_y, boxes):
"""Validate which kes are contained inside a given box.
points: NxKx2
boxes: Nx4
output: NxK
"""
x_within = (points_x[..., :, 0] >= boxes[:, 0, None]) & (points_x[..., :, 0] <= boxes[:, 2, None])
y_within = (points_y[..., :, 0] >= boxes[:, 1, None]) & (points_y[..., :, 0] <= boxes[:, 3, None])
return x_within & y_within
_TOTAL_SKIPPED = 0
def balance_ce_loss(pre_mk, target_mk):
pre_mk = torch.sigmoid(pre_mk)
pos_inds = target_mk.eq(1)
pos_num = torch.sum(pos_inds).float()
neg_num = torch.sum(1 - pos_inds).float()
loss = -(target_mk * torch.log(pre_mk + 1e-4)) / pos_num - ((1 - target_mk) * torch.log(1 - pre_mk + 1e-4)) / neg_num
return loss.sum()
def edge_loss(input, target):
n, c, h, w = input.size()
log_p = input.transpose(1, 2).transpose(2, 3).contiguous().view(1, -1)
target_t = target.transpose(1, 2).transpose(2, 3).contiguous().view(1, -1)
pos_index = (target_t == 1)
neg_index = (target_t == 0)
pos_index = pos_index.data.cpu().numpy().astype(bool)
neg_index = neg_index.data.cpu().numpy().astype(bool)
weight = torch.Tensor(log_p.size()).fill_(0)
weight = weight.numpy()
pos_num = pos_index.sum()
neg_num = neg_index.sum()
sum_num = pos_num + neg_num
weight[pos_index] = neg_num * 1.0 / sum_num
weight[neg_index] = pos_num * 1.0 / sum_num
weight = torch.from_numpy(weight)
weight = weight.cuda()
loss = F.binary_cross_entropy_with_logits(log_p, target_t, weight, size_average=True)
# del pos_index, neg_index
# del weight
return loss
class BORCNNLossComputation(object):
def __init__(self, proposal_matcher, fg_bg_sampler, discretization_size, cfg):
"""
Arguments:
proposal_matcher (Matcher)
discretization_size (int)
"""
self.proposal_matcher = proposal_matcher
self.fg_bg_sampler = fg_bg_sampler
self.discretization_size = discretization_size
self.cfg = cfg.clone()
def match_targets_to_proposals(self, proposal, target):
match_quality_matrix = boxlist_iou(target, proposal)
matched_idxs = self.proposal_matcher(match_quality_matrix)
target = target.copy_with_fields(["labels", "masks"])
matched_targets = target[matched_idxs.clamp(min=0)]
matched_targets.add_field("matched_idxs", matched_idxs)
return matched_targets
def prepare_targets(self, proposals, targets):
labels = []
masks = []
for proposals_per_image, targets_per_image in zip(proposals, targets):
matched_targets = self.match_targets_to_proposals(
proposals_per_image, targets_per_image
)
matched_idxs = matched_targets.get_field("matched_idxs")
labels_per_image = matched_targets.get_field("labels")
labels_per_image = labels_per_image.to(dtype=torch.int64)
# this can probably be removed, but is left here for clarity
# and completeness
neg_inds = matched_idxs == Matcher.BELOW_LOW_THRESHOLD
labels_per_image[neg_inds] = 0
# mask scores are only computed on positive samples
positive_inds = torch.nonzero(labels_per_image > 0).squeeze(1)
segmentation_masks = matched_targets.get_field("masks")
segmentation_masks = segmentation_masks[positive_inds]
positive_proposals = proposals_per_image[positive_inds]
masks_per_image = project_masks_on_boxes(
segmentation_masks, positive_proposals, self.discretization_size
)
labels.append(labels_per_image)
masks.append(masks_per_image)
return labels, masks
def subsample(self, proposals, targets):
"""
This method performs the positive/negative sampling, and return
the sampled proposals.
Note: this function keeps a state.
Arguments:
proposals (list[BoxList])
targets (list[BoxList])
"""
labels, kes, mty = self.prepare_targets(proposals, targets)
sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels)
proposals = list(proposals)
# add corresponding label and regression_targets information to the bounding boxes
for labels_per_image, kes_per_image, mty_per_image, proposals_per_image in zip(
labels, kes, mty, proposals
):
proposals_per_image.add_field("labels", labels_per_image)
proposals_per_image.add_field("kes", kes_per_image)
proposals_per_image.add_field("mty", mty_per_image)
# distributed sampled proposals, that were obtained on all feature maps
# concatenated via the fg_bg_sampler, into individual feature map levels
for img_idx, (pos_inds_img, neg_inds_img) in enumerate(
zip(sampled_pos_inds, sampled_neg_inds)
):
# img_sampled_inds = torch.nonzero(pos_inds_img | neg_inds_img).squeeze(1)
img_sampled_inds = torch.nonzero(pos_inds_img).squeeze(1)
proposals_per_image = proposals[img_idx][img_sampled_inds]
proposals[img_idx] = proposals_per_image
self._proposals = proposals
return proposals
def __call__(self, proposals, ke_logits_x, ke_logits_y, targets):
"""
Arguments:
proposals (list[BoxList])
mask_logits (Tensor)
targets (list[BoxList])
Return:
mask_loss (Tensor): scalar tensor containing the loss
"""
labels, mask_targets = self.prepare_targets(proposals, targets)
labels = cat(labels, dim=0)
mask_targets = cat(mask_targets, dim=0)
positive_inds = torch.nonzero(labels > 0).squeeze(1)
if mask_targets.numel() == 0:
return 0
sb, sh, sw = mask_targets.shape
mask_loss_x = edge_loss( ke_logits_x[positive_inds, 0].view([sb, 1, sh, sw]), mask_targets.view([sb, 1, sh, sw]))
mask_loss_y = edge_loss( ke_logits_y[positive_inds, 0].view([sb, 1, sh, sw]), mask_targets.view([sb, 1, sh, sw]))
mask_loss = mask_loss_x + mask_loss_y
return mask_loss , mask_loss_x, mask_loss_y
def make_roi_boundary_loss_evaluator(cfg):
matcher = Matcher(
cfg.MODEL.ROI_HEADS.FG_IOU_THRESHOLD,
cfg.MODEL.ROI_HEADS.BG_IOU_THRESHOLD,
allow_low_quality_matches=False,
)
fg_bg_sampler = BalancedPositiveNegativeSampler(
cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE, cfg.MODEL.ROI_HEADS.POSITIVE_FRACTION
)
loss_evaluator = BORCNNLossComputation(
matcher, fg_bg_sampler, cfg.MODEL.ROI_BOUNDARY_HEAD.RESOLUTION, cfg
)
return loss_evaluator