Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
import math | |
from maskrcnn_benchmark.modeling import registry | |
from maskrcnn_benchmark.modeling.box_coder import BoxCoder | |
from maskrcnn_benchmark.modeling.rpn.retinanet.retinanet import build_retinanet | |
from maskrcnn_benchmark.modeling.rpn.fcos.fcos import build_fcos | |
from .loss import make_rpn_loss_evaluator | |
from .anchor_generator import make_anchor_generator | |
from .inference import make_rpn_postprocessor | |
class RPNHeadConvRegressor(nn.Module): | |
""" | |
A simple RPN Head for classification and bbox regression | |
""" | |
def __init__(self, cfg, in_channels, num_anchors): | |
""" | |
Arguments: | |
cfg : config | |
in_channels (int): number of channels of the input feature | |
num_anchors (int): number of anchors to be predicted | |
""" | |
super(RPNHeadConvRegressor, self).__init__() | |
self.cls_logits = nn.Conv2d(in_channels, num_anchors, kernel_size=1, stride=1) | |
self.bbox_pred = nn.Conv2d( | |
in_channels, num_anchors * 4, kernel_size=1, stride=1 | |
) | |
for l in [self.cls_logits, self.bbox_pred]: | |
torch.nn.init.normal_(l.weight, std=0.01) | |
torch.nn.init.constant_(l.bias, 0) | |
def forward(self, x): | |
assert isinstance(x, (list, tuple)) | |
logits = [self.cls_logits(y) for y in x] | |
bbox_reg = [self.bbox_pred(y) for y in x] | |
return logits, bbox_reg | |
class RPNHeadFeatureSingleConv(nn.Module): | |
""" | |
Adds a simple RPN Head with one conv to extract the feature | |
""" | |
def __init__(self, cfg, in_channels): | |
""" | |
Arguments: | |
cfg : config | |
in_channels (int): number of channels of the input feature | |
""" | |
super(RPNHeadFeatureSingleConv, self).__init__() | |
self.conv = nn.Conv2d( | |
in_channels, in_channels, kernel_size=3, stride=1, padding=1 | |
) | |
for l in [self.conv]: | |
torch.nn.init.normal_(l.weight, std=0.01) | |
torch.nn.init.constant_(l.bias, 0) | |
self.out_channels = in_channels | |
def forward(self, x): | |
assert isinstance(x, (list, tuple)) | |
x = [F.relu(self.conv(z)) for z in x] | |
return x | |
class RPNHead(nn.Module): | |
""" | |
Adds a simple RPN Head with classification and regression heads | |
""" | |
def __init__(self, cfg, in_channels, num_anchors): | |
""" | |
Arguments: | |
cfg : config | |
in_channels (int): number of channels of the input feature | |
num_anchors (int): number of anchors to be predicted | |
""" | |
super(RPNHead, self).__init__() | |
self.conv = nn.Conv2d( | |
in_channels, in_channels, kernel_size=3, stride=1, padding=1 | |
) | |
self.cls_logits = nn.Conv2d(in_channels, num_anchors, kernel_size=1, stride=1) | |
self.bbox_pred_new = nn.Conv2d( | |
in_channels, num_anchors * 18, kernel_size=1, stride=1 | |
) | |
for l in [self.conv, self.cls_logits, self.bbox_pred_new]: | |
torch.nn.init.normal_(l.weight, std=0.01) | |
torch.nn.init.constant_(l.bias, 0) | |
def forward(self, x): | |
logits = [] | |
bbox_reg = [] | |
for feature in x: | |
t = F.relu(self.conv(feature)) | |
logits.append(self.cls_logits(t)) | |
bbox_reg.append(self.bbox_pred_new(t)) | |
return logits, bbox_reg | |
class RPNModule(torch.nn.Module): | |
""" | |
Module for RPN computation. Takes feature maps from the backbone and RPN | |
proposals and losses. Works for both FPN and non-FPN. | |
""" | |
def __init__(self, cfg, in_channels): | |
super(RPNModule, self).__init__() | |
self.cfg = cfg.clone() | |
anchor_generator = make_anchor_generator(cfg) | |
rpn_head = registry.RPN_HEADS[cfg.MODEL.RPN.RPN_HEAD] | |
head = rpn_head( | |
cfg, in_channels, anchor_generator.num_anchors_per_location()[0] | |
) | |
rpn_box_coder = BoxCoder(weights=(1.0, 1.0, 1.0, 1.0)) | |
box_selector_train = make_rpn_postprocessor(cfg, rpn_box_coder, is_train=True) | |
box_selector_test = make_rpn_postprocessor(cfg, rpn_box_coder, is_train=False) | |
loss_evaluator = make_rpn_loss_evaluator(cfg, rpn_box_coder) | |
self.anchor_generator = anchor_generator | |
self.head = head | |
self.box_selector_train = box_selector_train | |
self.box_selector_test = box_selector_test | |
self.loss_evaluator = loss_evaluator | |
def forward(self, images, features, targets=None, prefix=''): | |
""" | |
Arguments: | |
images (ImageList): images for which we want to compute the predictions | |
features (list[Tensor]): features computed from the images that are | |
used for computing the predictions. Each tensor in the list | |
correspond to different feature levels | |
targets (list[BoxList): ground-truth boxes present in the image (optional) | |
Returns: | |
boxes (list[BoxList]): the predicted boxes from the RPN, one BoxList per | |
image. | |
losses (dict[Tensor]): the losses for the model during training. During | |
testing, it is an empty dict. | |
""" | |
objectness, rpn_box_regression = self.head(features) # len = 5 | |
anchors = self.anchor_generator(images, features) | |
if self.training: | |
return self._forward_train(anchors, objectness, | |
rpn_box_regression, targets, prefix) | |
else: | |
return self._forward_test(anchors, objectness, rpn_box_regression) | |
def _forward_train(self, anchors, objectness, rpn_box_regression, # [image,number,[n,4]] | |
targets, prefix): | |
if self.cfg.MODEL.RPN_ONLY: | |
# When training an RPN-only model, the loss is determined by the | |
# predicted objectness and rpn_box_regression values and there is | |
# no need to transform the anchors into predicted boxes; this is an | |
# optimization that avoids the unnecessary transformation. | |
boxes = anchors | |
else: | |
# print('\n---end-to-end model---\n') | |
# For end-to-end models, anchors must be transformed into boxes and | |
# sampled into a training batch. | |
with torch.no_grad(): | |
boxes = self.box_selector_train( | |
anchors, objectness, rpn_box_regression, targets | |
) | |
anchors_new = list(zip(*anchors)) | |
regress_new = regress_to_box(anchors_new, rpn_box_regression) | |
loss_objectness, loss_rpn_box_reg = self.loss_evaluator( | |
anchors, objectness, regress_new, targets | |
) | |
losses = { | |
prefix + "loss_objectness": loss_objectness, | |
prefix + "loss_rpn_box_reg": loss_rpn_box_reg, | |
} | |
return boxes, losses | |
def _forward_test(self, anchors, objectness, rpn_box_regression): | |
boxes = self.box_selector_test(anchors, objectness, rpn_box_regression) | |
if self.cfg.MODEL.RPN_ONLY: | |
# For end-to-end models, the RPN proposals are an intermediate state | |
# and don't bother to sort them in decreasing score order. For RPN-only | |
# models, the proposals are the final output and we return them in | |
# high-to-low confidence order. | |
inds = [ | |
box.get_field("objectness").sort(descending=True)[1] for box in boxes | |
] | |
boxes = [box[ind] for box, ind in zip(boxes, inds)] | |
return boxes, {} | |
def build_rpn(cfg, in_channels): | |
""" | |
This gives the gist of it. Not super important because it doesn't change as much | |
""" | |
if cfg.MODEL.FCOS_ON: | |
return build_fcos(cfg, in_channels) | |
if cfg.MODEL.RETINANET_ON: | |
return build_retinanet(cfg, in_channels) | |
return RPNModule(cfg, in_channels) | |
def regress_to_box(anchor_define,regress_pre): | |
boxes_total = [] | |
num_f = 0 | |
for a, b in zip(anchor_define, regress_pre): | |
boxes_total.append(forward_feature_map(a, b)) | |
num_f += 1 | |
return boxes_total | |
def forward_feature_map(anchors_define, boxes_regression): | |
N, A, H, W = boxes_regression.shape | |
boxes_regression = faltten(boxes_regression, N, A, 18, H, W) # | |
# image_shapes = [box.size for box in anchors_define] | |
concat_anchors = torch.cat([a.bbox for a in anchors_define], dim=0) | |
concat_anchors = concat_anchors.reshape(N, -1, 4) | |
proposals = decode_iou(boxes_regression.view(-1, 18), concat_anchors.view(-1, 4)) | |
box_temp_post = proposals.view(N, -1, 4) | |
return box_temp_post | |
def faltten(layer, N, A, C, H, W): | |
layer = layer.view(N, -1, C, H, W) | |
layer = layer.permute(0, 3, 4, 1, 2) #N H W A C | |
layer = layer.reshape(N, -1, C) # N H*W*A C | |
return layer | |
def decode_iou( rel_codes, boxes, num_p = 8): | |
""" | |
From a set of original boxes and encoded relative box offsets, | |
get the decoded boxes. | |
Arguments: | |
rel_codes (Tensor): encoded boxes # predict [2, 12000, 4] | |
boxes (Tensor): reference boxes. # anchor [2, 12000, 4] xmin0 ymin1 xmax2 ymax3 | |
""" | |
boxes = boxes.to(rel_codes.dtype) | |
TO_REMOVE = 1 # TODO remove | |
widths = boxes[:, 2] - boxes[:, 0] + TO_REMOVE | |
heights = boxes[:, 3] - boxes[:, 1] + TO_REMOVE | |
dx = rel_codes[:, 16] | |
dy = rel_codes[:, 17] | |
ctr_x = boxes[:, 0] + 0.5 * widths | |
ctr_y = boxes[:, 1] + 0.5 * heights | |
ctr_x_new = dx * widths * 0.5 + ctr_x | |
ctr_y_new = dy * heights * 0.5 + ctr_y | |
# 123 | |
# 8#4 | |
# 765 | |
if num_p == 8: # 8 boundary points | |
x_1 = boxes[:, 0] + widths * rel_codes[:, 0] | |
y_1 = boxes[:, 1] + heights * rel_codes[:, 1] | |
x_2 = ctr_x + widths * rel_codes[:, 2] | |
y_2 = boxes[:, 1] + heights * rel_codes[:, 3] | |
x_3 = boxes[:, 2] + widths * rel_codes[:, 4] | |
y_3 = boxes[:, 1] + heights * rel_codes[:, 5] | |
x_4 = boxes[:, 2] + widths * rel_codes[:, 6] | |
y_4 = ctr_y + heights * rel_codes[:, 7] | |
x_5 = boxes[:, 2] + widths * rel_codes[:, 8] | |
y_5 = boxes[:, 3] + heights * rel_codes[:, 9] | |
x_6 = ctr_x + widths * rel_codes[:, 10] | |
y_6 = boxes[:, 3] + heights * rel_codes[:, 11] | |
x_7 = boxes[:, 0] + widths * rel_codes[:, 12] | |
y_7 = boxes[:, 3] + heights * rel_codes[:, 13] | |
x_8 = boxes[:, 0] + widths * rel_codes[:, 14] | |
y_8 = ctr_y + heights * rel_codes[:, 15] | |
x_total = torch.stack([x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8], 0) # [8, N] | |
y_total = torch.stack([y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8], 0) | |
x_min = torch.min(x_total, 0, keepdim=True) # [1, N] | |
x_max = torch.max(x_total, 0, keepdim=True) # [1, N] | |
y_min = torch.min(y_total, 0, keepdim=True) # [1, N] | |
y_max = torch.max(y_total, 0, keepdim=True) # [1, N] | |
N1, N2 = x_min[0].shape | |
x_min = x_min[0].view([N2]) | |
x_max = x_max[0].view([N2]) | |
y_min = y_min[0].view([N2]) | |
y_max = y_max[0].view([N2]) | |
x_min = torch.stack([x_min, ctr_x_new], 0) | |
x_max = torch.stack([x_max, ctr_x_new], 0) | |
y_min = torch.stack([y_min, ctr_y_new], 0) | |
y_max = torch.stack([y_max, ctr_y_new], 0) | |
x_min = torch.min(x_min, 0, keepdim=True) # [1, N] | |
x_max = torch.max(x_max, 0, keepdim=True) # [1, N] | |
y_min = torch.min(y_min, 0, keepdim=True) # [1, N] | |
y_max = torch.max(y_max, 0, keepdim=True) # [1, N] | |
pred_boxes = torch.zeros_like(boxes) | |
pred_boxes[:, 0] = x_min[0][0, :] | |
pred_boxes[:, 1] = y_min[0][0, :] | |
pred_boxes[:, 2] = x_max[0][0, :] | |
pred_boxes[:, 3] = y_max[0][0, :] | |
return pred_boxes |