Cyril666 commited on
Commit
4ab714e
·
1 Parent(s): 62f78e4

First model version

Browse files
Files changed (1) hide show
  1. app.py +11 -5
app.py CHANGED
@@ -1,8 +1,8 @@
1
  import os
2
  os.system('pip install --upgrade --no-cache-dir gdown')
3
  os.system('gdown -O ./output/ctw/model_ctw.pth 1Ajslu_9WisuZ2nJGzE6qbD87aK6_ozzA')
4
- os.system('gdown -O ./workdir.zip 1mYM_26qHUom_5NU7iutHneB_KHlLjL5y')
5
- os.system('unzip workdir.zip')
6
  os.system('pip install "git+https://github.com/philferriere/cocoapi.git#egg=pycocotools&subdirectory=PythonAPI"')
7
  os.system('python setup.py build develop --user')
8
 
@@ -17,12 +17,13 @@ from maskrcnn_benchmark.config import cfg
17
 
18
  def process_image(filepath):
19
  # rec model
 
20
  config = Config('configs/rec/train_abinet.yaml')
21
  config.model_vision_checkpoint = None
22
  model = get_model(config)
23
  model = load(model, 'workdir/train-abinet/best-train-abinet.pth')
24
  charset = CharsetMapper(filename=config.dataset_charset_path, max_length=config.dataset_max_length + 1)
25
-
26
  # det model
27
  cfg.merge_from_file('./configs/det/r50_baseline.yaml')
28
  cfg.merge_from_list(["MODEL.DEVICE", "cpu"])
@@ -38,7 +39,11 @@ def process_image(filepath):
38
  result_polygons, result_masks, result_boxes = det_demo.run_on_opencv_image(image)
39
 
40
  # cut patch
41
- image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
 
 
 
 
42
  patchs = [image[box[1]:box[3], box[0]:box[2], :] for box in result_boxes]
43
  patchs = [preprocess(patch, config.dataset_image_width, config.dataset_image_height) for patch in patchs]
44
  patchs = torch.stack(patchs, dim=0)
@@ -46,6 +51,7 @@ def process_image(filepath):
46
  res = model(patchs)
47
  rec_result = postprocess(res, charset, 'alignment')[0]
48
  print(rec_result)
 
49
 
50
  # visual detect results
51
  visual_image = det_demo.visualization(image.copy(), result_polygons, result_masks, result_boxes)
@@ -64,7 +70,7 @@ description = "西北工业大学航海学院张博强毕设,目前识别部
64
 
65
  iface = gr.Interface(fn=process_image,
66
  inputs=[gr.inputs.Image(label="image", type="filepath")],
67
- outputs=[gr.outputs.Image(), gr.outputs.Textbox()],
68
  title=title,
69
  description=description,
70
  examples=glob.glob('figs/test/*.png'))
 
1
  import os
2
  os.system('pip install --upgrade --no-cache-dir gdown')
3
  os.system('gdown -O ./output/ctw/model_ctw.pth 1Ajslu_9WisuZ2nJGzE6qbD87aK6_ozzA')
4
+ #os.system('gdown -O ./workdir.zip 1mYM_26qHUom_5NU7iutHneB_KHlLjL5y')
5
+ #os.system('unzip workdir.zip')
6
  os.system('pip install "git+https://github.com/philferriere/cocoapi.git#egg=pycocotools&subdirectory=PythonAPI"')
7
  os.system('python setup.py build develop --user')
8
 
 
17
 
18
  def process_image(filepath):
19
  # rec model
20
+ '''
21
  config = Config('configs/rec/train_abinet.yaml')
22
  config.model_vision_checkpoint = None
23
  model = get_model(config)
24
  model = load(model, 'workdir/train-abinet/best-train-abinet.pth')
25
  charset = CharsetMapper(filename=config.dataset_charset_path, max_length=config.dataset_max_length + 1)
26
+ '''
27
  # det model
28
  cfg.merge_from_file('./configs/det/r50_baseline.yaml')
29
  cfg.merge_from_list(["MODEL.DEVICE", "cpu"])
 
39
  result_polygons, result_masks, result_boxes = det_demo.run_on_opencv_image(image)
40
 
41
  # cut patch
42
+ #image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
43
+ patchs = [image[box[1]:box[3], box[0]:box[2], :] for box in result_boxes]
44
+ patchs = [cv2.resize(patch, (128,32)) for patch in patchs]
45
+ patchs = np.stack(patchs, axis=0).transpose(0,3,1,2)
46
+ '''
47
  patchs = [image[box[1]:box[3], box[0]:box[2], :] for box in result_boxes]
48
  patchs = [preprocess(patch, config.dataset_image_width, config.dataset_image_height) for patch in patchs]
49
  patchs = torch.stack(patchs, dim=0)
 
51
  res = model(patchs)
52
  rec_result = postprocess(res, charset, 'alignment')[0]
53
  print(rec_result)
54
+ '''
55
 
56
  # visual detect results
57
  visual_image = det_demo.visualization(image.copy(), result_polygons, result_masks, result_boxes)
 
70
 
71
  iface = gr.Interface(fn=process_image,
72
  inputs=[gr.inputs.Image(label="image", type="filepath")],
73
+ outputs=[gr.outputs.Image()],#, gr.outputs.Textbox()
74
  title=title,
75
  description=description,
76
  examples=glob.glob('figs/test/*.png'))