Spaces:
Build error
Build error
File size: 2,314 Bytes
3d59cc2 38475a2 7998bc9 eddc507 3d59cc2 7998bc9 4add334 3d59cc2 7998bc9 3d59cc2 7998bc9 4add334 3d59cc2 2155fe1 3d59cc2 4add334 3d59cc2 7998bc9 3d59cc2 7998bc9 e7d36e8 0fdb9e6 7998bc9 0fdb9e6 3d59cc2 0404923 e4fcad2 3d59cc2 e4fcad2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
import os
os.system('pip install --upgrade --no-cache-dir gdown')
os.system('gdown -O ./output/ctw/model_ctw.pth 1Ajslu_9WisuZ2nJGzE6qbD87aK6_ozzA')
os.system('gdown -O ./workdir.zip 1mYM_26qHUom_5NU7iutHneB_KHlLjL5y')
os.system('unzip workdir.zip')
os.system('pip install "git+https://github.com/philferriere/cocoapi.git#egg=pycocotools&subdirectory=PythonAPI"')
os.system('python setup.py build develop --user')
import cv2
import pandas as pd
import gradio as gr
from det_demo import DetDemo
from maskrcnn_benchmark.config import cfg
from demo import get_model, preprocess, postprocess, load
from utils import Config, Logger, CharsetMapper
def infer(filepath):
config = Config('configs/rec/train_abinet.yaml')
config.model_vision_checkpoint = None
model = get_model(config)
model = load(model, 'workdir/train-abinet/best-train-abinet.pth')
charset = CharsetMapper(filename=config.dataset_charset_path, max_length=config.dataset_max_length + 1)
cfg.merge_from_file('./configs/det/r50_baseline.yaml')
# manual override some options
cfg.merge_from_list(["MODEL.DEVICE", "cpu"])
det_demo = DetDemo(
cfg,
min_image_size=800,
confidence_threshold=0.7,
output_polygon=True
)
image = cv2.imread(filepath)
patchs = [image[box[1]:box[3], box[0]:box[2], :] for box in result_boxes]
patchs = [preprocess(patch, config.dataset_image_width, config.dataset_image_height) for patch in patchs]
patchs = torch.stack(patchs, dim=0)
result_polygons, result_masks, result_boxes = det_demo.run_on_opencv_image(image)
visual_image = det_demo.visualization(image.copy(), result_polygons, result_masks, result_boxes)
cv2.imwrite('result.jpg', visual_image)
return 'result.jpg'#, pd.DataFrame(result_words)
iface = gr.Interface(
fn=infer,
title="张博强毕设展示",
description="毕设题目:自然场景中任意形状文字的检测与识别\n目前进度:检测",
inputs=[gr.inputs.Image(label="image", type="filepath")],
outputs=[gr.outputs.Image()], #, gr.outputs.Dataframe(headers=['word'])],
#examples=['example1.jpg', 'example2.jpg', 'example3.jpg'],
#article="<a href=\"https://github.com/MhLiao/MaskTextSpotterV3\">GitHub Repo</a>",
).launch(enable_queue=True) |