File size: 20,295 Bytes
6250360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
#include "dcn_v2_im2col_cuda.h"
#include <cstdio>
#include <algorithm>
#include <cstring>

#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>

#include <THC/THC.h>
#include <THC/THCAtomics.cuh>
#include <THC/THCDeviceUtils.cuh>

#define CUDA_KERNEL_LOOP(i, n)                          \
  for (int i = blockIdx.x * blockDim.x + threadIdx.x;   \
      i < (n);                                          \
      i += blockDim.x * gridDim.x)

const int CUDA_NUM_THREADS = 1024;
inline int GET_BLOCKS(const int N)
{
  return (N + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS;
}


__device__ float dmcn_im2col_bilinear(const float *bottom_data, const int data_width,
                                      const int height, const int width, float h, float w)
{
  int h_low = floor(h);
  int w_low = floor(w);
  int h_high = h_low + 1;
  int w_high = w_low + 1;

  float lh = h - h_low;
  float lw = w - w_low;
  float hh = 1 - lh, hw = 1 - lw;

  float v1 = 0;
  if (h_low >= 0 && w_low >= 0)
    v1 = bottom_data[h_low * data_width + w_low];
  float v2 = 0;
  if (h_low >= 0 && w_high <= width - 1)
    v2 = bottom_data[h_low * data_width + w_high];
  float v3 = 0;
  if (h_high <= height - 1 && w_low >= 0)
    v3 = bottom_data[h_high * data_width + w_low];
  float v4 = 0;
  if (h_high <= height - 1 && w_high <= width - 1)
    v4 = bottom_data[h_high * data_width + w_high];

  float w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;

  float val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
  return val;
}

__device__ float dmcn_get_gradient_weight(float argmax_h, float argmax_w,
                                          const int h, const int w, const int height, const int width)
{
  if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 || argmax_w >= width)
  {
    //empty
    return 0;
  }

  int argmax_h_low = floor(argmax_h);
  int argmax_w_low = floor(argmax_w);
  int argmax_h_high = argmax_h_low + 1;
  int argmax_w_high = argmax_w_low + 1;

  float weight = 0;
  if (h == argmax_h_low && w == argmax_w_low)
    weight = (h + 1 - argmax_h) * (w + 1 - argmax_w);
  if (h == argmax_h_low && w == argmax_w_high)
    weight = (h + 1 - argmax_h) * (argmax_w + 1 - w);
  if (h == argmax_h_high && w == argmax_w_low)
    weight = (argmax_h + 1 - h) * (w + 1 - argmax_w);
  if (h == argmax_h_high && w == argmax_w_high)
    weight = (argmax_h + 1 - h) * (argmax_w + 1 - w);
  return weight;
}

__device__ float dmcn_get_coordinate_weight(float argmax_h, float argmax_w,
                                            const int height, const int width, const float *im_data,
                                            const int data_width, const int bp_dir)
{
  if (argmax_h <= -1 || argmax_h >= height || argmax_w <= -1 || argmax_w >= width)
  {
    //empty
    return 0;
  }

  int argmax_h_low = floor(argmax_h);
  int argmax_w_low = floor(argmax_w);
  int argmax_h_high = argmax_h_low + 1;
  int argmax_w_high = argmax_w_low + 1;

  float weight = 0;

  if (bp_dir == 0)
  {
    if (argmax_h_low >= 0 && argmax_w_low >= 0)
      weight += -1 * (argmax_w_low + 1 - argmax_w) * im_data[argmax_h_low * data_width + argmax_w_low];
    if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
      weight += -1 * (argmax_w - argmax_w_low) * im_data[argmax_h_low * data_width + argmax_w_high];
    if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
      weight += (argmax_w_low + 1 - argmax_w) * im_data[argmax_h_high * data_width + argmax_w_low];
    if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
      weight += (argmax_w - argmax_w_low) * im_data[argmax_h_high * data_width + argmax_w_high];
  }
  else if (bp_dir == 1)
  {
    if (argmax_h_low >= 0 && argmax_w_low >= 0)
      weight += -1 * (argmax_h_low + 1 - argmax_h) * im_data[argmax_h_low * data_width + argmax_w_low];
    if (argmax_h_low >= 0 && argmax_w_high <= width - 1)
      weight += (argmax_h_low + 1 - argmax_h) * im_data[argmax_h_low * data_width + argmax_w_high];
    if (argmax_h_high <= height - 1 && argmax_w_low >= 0)
      weight += -1 * (argmax_h - argmax_h_low) * im_data[argmax_h_high * data_width + argmax_w_low];
    if (argmax_h_high <= height - 1 && argmax_w_high <= width - 1)
      weight += (argmax_h - argmax_h_low) * im_data[argmax_h_high * data_width + argmax_w_high];
  }

  return weight;
}

__global__ void modulated_deformable_im2col_gpu_kernel(const int n,
                                                       const float *data_im, const float *data_offset, const float *data_mask,
                                                       const int height, const int width, const int kernel_h, const int kernel_w,
                                                       const int pad_h, const int pad_w,
                                                       const int stride_h, const int stride_w,
                                                       const int dilation_h, const int dilation_w,
                                                       const int channel_per_deformable_group,
                                                       const int batch_size, const int num_channels, const int deformable_group,
                                                       const int height_col, const int width_col,
                                                       float *data_col)
{
  // launch channels * batch_size * height_col * width_col cores
  CUDA_KERNEL_LOOP(index, n)
  {
    // NOTE(CharlesShang): different from Dai Jifeng's MXNet implementation, col_buffer is of shape (c*kw*kh, N, oh, ow)
    // here columns is of shape (N, c*kw*kh, oh * ow), need to adapt axis

    // index index of output matrix
    const int w_col = index % width_col;
    const int h_col = (index / width_col) % height_col;
    // const int b_col = (index / width_col / height_col) % batch_size;
    const int b_col = (index / width_col / height_col / num_channels) % batch_size;
    // const int c_im = (index / width_col / height_col) / batch_size;
    const int c_im = (index / width_col / height_col) % num_channels;
    // const int c_col = c_im * kernel_h * kernel_w;
    const int c_col = c_im * kernel_h * kernel_w;

    // compute deformable group index
    const int deformable_group_index = c_im / channel_per_deformable_group;

    const int h_in = h_col * stride_h - pad_h;
    const int w_in = w_col * stride_w - pad_w;

    //  float *data_col_ptr = data_col + ((c_col * batch_size + b_col) * height_col + h_col) * width_col + w_col;
    float *data_col_ptr = data_col + ((b_col * num_channels * kernel_w * kernel_h + c_col) * height_col + h_col) * width_col + w_col;
    //const float* data_im_ptr = data_im + ((b_col * num_channels + c_im) * height + h_in) * width + w_in;
    const float *data_im_ptr = data_im + (b_col * num_channels + c_im) * height * width;
    const float *data_offset_ptr = data_offset + (b_col * deformable_group + deformable_group_index) * 2 * kernel_h * kernel_w * height_col * width_col;

    const float *data_mask_ptr = data_mask + (b_col * deformable_group + deformable_group_index) * kernel_h * kernel_w * height_col * width_col;

    for (int i = 0; i < kernel_h; ++i)
    {
      for (int j = 0; j < kernel_w; ++j)
      {
        const int data_offset_h_ptr = ((2 * (i * kernel_w + j)) * height_col + h_col) * width_col + w_col;
        const int data_offset_w_ptr = ((2 * (i * kernel_w + j) + 1) * height_col + h_col) * width_col + w_col;
        const int data_mask_hw_ptr = ((i * kernel_w + j) * height_col + h_col) * width_col + w_col;
        const float offset_h = data_offset_ptr[data_offset_h_ptr];
        const float offset_w = data_offset_ptr[data_offset_w_ptr];
        const float mask = data_mask_ptr[data_mask_hw_ptr];
        float val = static_cast<float>(0);
        const float h_im = h_in + i * dilation_h + offset_h;
        const float w_im = w_in + j * dilation_w + offset_w;
        //if (h_im >= 0 && w_im >= 0 && h_im < height && w_im < width) {
        if (h_im > -1 && w_im > -1 && h_im < height && w_im < width)
        {
          //const float map_h = i * dilation_h + offset_h;
          //const float map_w = j * dilation_w + offset_w;
          //const int cur_height = height - h_in;
          //const int cur_width = width - w_in;
          //val = dmcn_im2col_bilinear(data_im_ptr, width, cur_height, cur_width, map_h, map_w);
          val = dmcn_im2col_bilinear(data_im_ptr, width, height, width, h_im, w_im);
        }
        *data_col_ptr = val * mask;
        // data_col_ptr += batch_size * height_col * width_col;
        data_col_ptr += height_col * width_col;
      }
    }
  }
}

__global__ void modulated_deformable_col2im_gpu_kernel(const int n,
                                                       const float *data_col, const float *data_offset, const float *data_mask,
                                                       const int channels, const int height, const int width,
                                                       const int kernel_h, const int kernel_w,
                                                       const int pad_h, const int pad_w,
                                                       const int stride_h, const int stride_w,
                                                       const int dilation_h, const int dilation_w,
                                                       const int channel_per_deformable_group,
                                                       const int batch_size, const int deformable_group,
                                                       const int height_col, const int width_col,
                                                       float *grad_im)
{
  CUDA_KERNEL_LOOP(index, n)
  {
    const int j = (index / width_col / height_col / batch_size) % kernel_w;
    const int i = (index / width_col / height_col / batch_size / kernel_w) % kernel_h;
    const int c = index / width_col / height_col / batch_size / kernel_w / kernel_h;
    // compute the start and end of the output

    const int deformable_group_index = c / channel_per_deformable_group;

    int w_out = index % width_col;
    int h_out = (index / width_col) % height_col;
    int b = (index / width_col / height_col) % batch_size;
    int w_in = w_out * stride_w - pad_w;
    int h_in = h_out * stride_h - pad_h;

    const float *data_offset_ptr = data_offset + (b * deformable_group + deformable_group_index) * 2 * kernel_h * kernel_w * height_col * width_col;
    const float *data_mask_ptr = data_mask + (b * deformable_group + deformable_group_index) * kernel_h * kernel_w * height_col * width_col;
    const int data_offset_h_ptr = ((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out;
    const int data_offset_w_ptr = ((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out;
    const int data_mask_hw_ptr = ((i * kernel_w + j) * height_col + h_out) * width_col + w_out;
    const float offset_h = data_offset_ptr[data_offset_h_ptr];
    const float offset_w = data_offset_ptr[data_offset_w_ptr];
    const float mask = data_mask_ptr[data_mask_hw_ptr];
    const float cur_inv_h_data = h_in + i * dilation_h + offset_h;
    const float cur_inv_w_data = w_in + j * dilation_w + offset_w;

    const float cur_top_grad = data_col[index] * mask;
    const int cur_h = (int)cur_inv_h_data;
    const int cur_w = (int)cur_inv_w_data;
    for (int dy = -2; dy <= 2; dy++)
    {
      for (int dx = -2; dx <= 2; dx++)
      {
        if (cur_h + dy >= 0 && cur_h + dy < height &&
            cur_w + dx >= 0 && cur_w + dx < width &&
            abs(cur_inv_h_data - (cur_h + dy)) < 1 &&
            abs(cur_inv_w_data - (cur_w + dx)) < 1)
        {
          int cur_bottom_grad_pos = ((b * channels + c) * height + cur_h + dy) * width + cur_w + dx;
          float weight = dmcn_get_gradient_weight(cur_inv_h_data, cur_inv_w_data, cur_h + dy, cur_w + dx, height, width);
          atomicAdd(grad_im + cur_bottom_grad_pos, weight * cur_top_grad);
        }
      }
    }
  }
}

__global__ void modulated_deformable_col2im_coord_gpu_kernel(const int n,
                                                             const float *data_col, const float *data_im,
                                                             const float *data_offset, const float *data_mask,
                                                             const int channels, const int height, const int width,
                                                             const int kernel_h, const int kernel_w,
                                                             const int pad_h, const int pad_w,
                                                             const int stride_h, const int stride_w,
                                                             const int dilation_h, const int dilation_w,
                                                             const int channel_per_deformable_group,
                                                             const int batch_size, const int offset_channels, const int deformable_group,
                                                             const int height_col, const int width_col,
                                                             float *grad_offset, float *grad_mask)
{
  CUDA_KERNEL_LOOP(index, n)
  {
    float val = 0, mval = 0;
    int w = index % width_col;
    int h = (index / width_col) % height_col;
    int c = (index / width_col / height_col) % offset_channels;
    int b = (index / width_col / height_col) / offset_channels;
    // compute the start and end of the output

    const int deformable_group_index = c / (2 * kernel_h * kernel_w);
    const int col_step = kernel_h * kernel_w;
    int cnt = 0;
    const float *data_col_ptr = data_col + deformable_group_index * channel_per_deformable_group * batch_size * width_col * height_col;
    const float *data_im_ptr = data_im + (b * deformable_group + deformable_group_index) * channel_per_deformable_group / kernel_h / kernel_w * height * width;
    const float *data_offset_ptr = data_offset + (b * deformable_group + deformable_group_index) * 2 * kernel_h * kernel_w * height_col * width_col;
    const float *data_mask_ptr = data_mask + (b * deformable_group + deformable_group_index) * kernel_h * kernel_w * height_col * width_col;

    const int offset_c = c - deformable_group_index * 2 * kernel_h * kernel_w;

    for (int col_c = (offset_c / 2); col_c < channel_per_deformable_group; col_c += col_step)
    {
      const int col_pos = (((col_c * batch_size + b) * height_col) + h) * width_col + w;
      const int bp_dir = offset_c % 2;

      int j = (col_pos / width_col / height_col / batch_size) % kernel_w;
      int i = (col_pos / width_col / height_col / batch_size / kernel_w) % kernel_h;
      int w_out = col_pos % width_col;
      int h_out = (col_pos / width_col) % height_col;
      int w_in = w_out * stride_w - pad_w;
      int h_in = h_out * stride_h - pad_h;
      const int data_offset_h_ptr = (((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out);
      const int data_offset_w_ptr = (((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out);
      const int data_mask_hw_ptr = (((i * kernel_w + j) * height_col + h_out) * width_col + w_out);
      const float offset_h = data_offset_ptr[data_offset_h_ptr];
      const float offset_w = data_offset_ptr[data_offset_w_ptr];
      const float mask = data_mask_ptr[data_mask_hw_ptr];
      float inv_h = h_in + i * dilation_h + offset_h;
      float inv_w = w_in + j * dilation_w + offset_w;
      if (inv_h <= -1 || inv_w <= -1 || inv_h >= height || inv_w >= width)
      {
        inv_h = inv_w = -2;
      }
      else
      {
        mval += data_col_ptr[col_pos] * dmcn_im2col_bilinear(data_im_ptr + cnt * height * width, width, height, width, inv_h, inv_w);
      }
      const float weight = dmcn_get_coordinate_weight(
          inv_h, inv_w,
          height, width, data_im_ptr + cnt * height * width, width, bp_dir);
      val += weight * data_col_ptr[col_pos] * mask;
      cnt += 1;
    }
    // KERNEL_ASSIGN(grad_offset[index], offset_req, val);
    grad_offset[index] = val;
    if (offset_c % 2 == 0)
      // KERNEL_ASSIGN(grad_mask[(((b * deformable_group + deformable_group_index) * kernel_h * kernel_w + offset_c / 2) * height_col + h) * width_col + w], mask_req, mval);
      grad_mask[(((b * deformable_group + deformable_group_index) * kernel_h * kernel_w + offset_c / 2) * height_col + h) * width_col + w] = mval;
  }
}

void modulated_deformable_im2col_cuda(cudaStream_t stream,
  const float* data_im, const float* data_offset, const float* data_mask,
  const int batch_size, const int channels, const int height_im, const int width_im, 
  const int height_col, const int width_col, const int kernel_h, const int kernel_w,
  const int pad_h, const int pad_w, const int stride_h, const int stride_w, 
  const int dilation_h, const int dilation_w,
  const int deformable_group, float* data_col) {
  // num_axes should be smaller than block size
  const int channel_per_deformable_group = channels / deformable_group;
  const int num_kernels = channels * batch_size * height_col * width_col;
  modulated_deformable_im2col_gpu_kernel
      <<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS,
          0, stream>>>(
      num_kernels, data_im, data_offset, data_mask, height_im, width_im, kernel_h, kernel_w,
      pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w, channel_per_deformable_group,
      batch_size, channels, deformable_group, height_col, width_col, data_col);
  
  cudaError_t err = cudaGetLastError();
  if (err != cudaSuccess)
  {
    printf("error in modulated_deformable_im2col_cuda: %s\n", cudaGetErrorString(err));
  }

}

void modulated_deformable_col2im_cuda(cudaStream_t stream,
  const float* data_col, const float* data_offset, const float* data_mask,
  const int batch_size, const int channels, const int height_im, const int width_im, 
  const int height_col, const int width_col, const int kernel_h, const int kernel_w,
  const int pad_h, const int pad_w, const int stride_h, const int stride_w, 
  const int dilation_h, const int dilation_w, 
  const int deformable_group, float* grad_im){

  const int channel_per_deformable_group = channels / deformable_group;
  const int num_kernels = channels * kernel_h * kernel_w * batch_size * height_col * width_col;
  modulated_deformable_col2im_gpu_kernel
      <<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS,
          0, stream>>>(
        num_kernels, data_col, data_offset, data_mask, channels, height_im, width_im,
        kernel_h, kernel_w, pad_h, pad_h, stride_h, stride_w,
        dilation_h, dilation_w, channel_per_deformable_group,
        batch_size, deformable_group, height_col, width_col, grad_im);
  cudaError_t err = cudaGetLastError();
  if (err != cudaSuccess)
  {
    printf("error in modulated_deformable_col2im_cuda: %s\n", cudaGetErrorString(err));
  }

}

void modulated_deformable_col2im_coord_cuda(cudaStream_t stream,
  const float* data_col, const float* data_im, const float* data_offset, const float* data_mask,
  const int batch_size, const int channels, const int height_im, const int width_im, 
  const int height_col, const int width_col, const int kernel_h, const int kernel_w,
  const int pad_h, const int pad_w, const int stride_h, const int stride_w, 
  const int dilation_h, const int dilation_w, 
  const int deformable_group,
  float* grad_offset, float* grad_mask) {
  const int num_kernels = batch_size * height_col * width_col * 2 * kernel_h * kernel_w * deformable_group;
  const int channel_per_deformable_group = channels * kernel_h * kernel_w / deformable_group;
  modulated_deformable_col2im_coord_gpu_kernel
      <<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS,
        0, stream>>>(
        num_kernels, data_col, data_im, data_offset, data_mask, channels, height_im, width_im,
        kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
        dilation_h, dilation_w, channel_per_deformable_group,
        batch_size, 2 * kernel_h * kernel_w * deformable_group, deformable_group, height_col, width_col, 
        grad_offset, grad_mask);
  cudaError_t err = cudaGetLastError();
  if (err != cudaSuccess)
  {
    printf("error in modulated_deformable_col2im_coord_cuda: %s\n", cudaGetErrorString(err));
  }
}