Spaces:
Build error
Build error
File size: 16,214 Bytes
6250360 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
/*!
* Copyright (c) 2017 Microsoft
* Licensed under The MIT License [see LICENSE for details]
* \file deformable_psroi_pooling.cu
* \brief
* \author Yi Li, Guodong Zhang, Jifeng Dai
*/
/***************** Adapted by Charles Shang *********************/
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <iostream>
#include <ATen/ATen.h>
#include <ATen/cuda/CUDAContext.h>
#include <THC/THC.h>
#include <THC/THCAtomics.cuh>
#include <THC/THCDeviceUtils.cuh>
#define CUDA_KERNEL_LOOP(i, n) \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; \
i < (n); \
i += blockDim.x * gridDim.x)
const int CUDA_NUM_THREADS = 1024;
inline int GET_BLOCKS(const int N)
{
return (N + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS;
}
template <typename T>
__device__ T bilinear_interp(
const T *data,
const T x,
const T y,
const int width,
const int height)
{
int x1 = floor(x);
int x2 = ceil(x);
int y1 = floor(y);
int y2 = ceil(y);
T dist_x = static_cast<T>(x - x1);
T dist_y = static_cast<T>(y - y1);
T value11 = data[y1 * width + x1];
T value12 = data[y2 * width + x1];
T value21 = data[y1 * width + x2];
T value22 = data[y2 * width + x2];
T value = (1 - dist_x) * (1 - dist_y) * value11 +
(1 - dist_x) * dist_y * value12 +
dist_x * (1 - dist_y) * value21 +
dist_x * dist_y * value22;
return value;
}
template <typename T>
__global__ void DeformablePSROIPoolForwardKernel(
const int count,
const T *bottom_data,
const T spatial_scale,
const int channels,
const int height, const int width,
const int pooled_height, const int pooled_width,
const T *bottom_rois, const T *bottom_trans,
const int no_trans,
const T trans_std,
const int sample_per_part,
const int output_dim,
const int group_size,
const int part_size,
const int num_classes,
const int channels_each_class,
T *top_data,
T *top_count)
{
CUDA_KERNEL_LOOP(index, count)
{
// The output is in order (n, ctop, ph, pw)
int pw = index % pooled_width;
int ph = (index / pooled_width) % pooled_height;
int ctop = (index / pooled_width / pooled_height) % output_dim;
int n = index / pooled_width / pooled_height / output_dim;
// [start, end) interval for spatial sampling
const T *offset_bottom_rois = bottom_rois + n * 5;
int roi_batch_ind = offset_bottom_rois[0];
T roi_start_w = static_cast<T>(round(offset_bottom_rois[1])) * spatial_scale - 0.5;
T roi_start_h = static_cast<T>(round(offset_bottom_rois[2])) * spatial_scale - 0.5;
T roi_end_w = static_cast<T>(round(offset_bottom_rois[3]) + 1.) * spatial_scale - 0.5;
T roi_end_h = static_cast<T>(round(offset_bottom_rois[4]) + 1.) * spatial_scale - 0.5;
// Force too small ROIs to be 1x1
T roi_width = max(roi_end_w - roi_start_w, 0.1); //avoid 0
T roi_height = max(roi_end_h - roi_start_h, 0.1);
// Compute w and h at bottom
T bin_size_h = roi_height / static_cast<T>(pooled_height);
T bin_size_w = roi_width / static_cast<T>(pooled_width);
T sub_bin_size_h = bin_size_h / static_cast<T>(sample_per_part);
T sub_bin_size_w = bin_size_w / static_cast<T>(sample_per_part);
int part_h = floor(static_cast<T>(ph) / pooled_height * part_size);
int part_w = floor(static_cast<T>(pw) / pooled_width * part_size);
int class_id = ctop / channels_each_class;
T trans_x = no_trans ? static_cast<T>(0) : bottom_trans[(((n * num_classes + class_id) * 2) * part_size + part_h) * part_size + part_w] * trans_std;
T trans_y = no_trans ? static_cast<T>(0) : bottom_trans[(((n * num_classes + class_id) * 2 + 1) * part_size + part_h) * part_size + part_w] * trans_std;
T wstart = static_cast<T>(pw) * bin_size_w + roi_start_w;
wstart += trans_x * roi_width;
T hstart = static_cast<T>(ph) * bin_size_h + roi_start_h;
hstart += trans_y * roi_height;
T sum = 0;
int count = 0;
int gw = floor(static_cast<T>(pw) * group_size / pooled_width);
int gh = floor(static_cast<T>(ph) * group_size / pooled_height);
gw = min(max(gw, 0), group_size - 1);
gh = min(max(gh, 0), group_size - 1);
const T *offset_bottom_data = bottom_data + (roi_batch_ind * channels) * height * width;
for (int ih = 0; ih < sample_per_part; ih++)
{
for (int iw = 0; iw < sample_per_part; iw++)
{
T w = wstart + iw * sub_bin_size_w;
T h = hstart + ih * sub_bin_size_h;
// bilinear interpolation
if (w < -0.5 || w > width - 0.5 || h < -0.5 || h > height - 0.5)
{
continue;
}
w = min(max(w, 0.), width - 1.);
h = min(max(h, 0.), height - 1.);
int c = (ctop * group_size + gh) * group_size + gw;
T val = bilinear_interp(offset_bottom_data + c * height * width, w, h, width, height);
sum += val;
count++;
}
}
top_data[index] = count == 0 ? static_cast<T>(0) : sum / count;
top_count[index] = count;
}
}
template <typename T>
__global__ void DeformablePSROIPoolBackwardAccKernel(
const int count,
const T *top_diff,
const T *top_count,
const int num_rois,
const T spatial_scale,
const int channels,
const int height, const int width,
const int pooled_height, const int pooled_width,
const int output_dim,
T *bottom_data_diff, T *bottom_trans_diff,
const T *bottom_data,
const T *bottom_rois,
const T *bottom_trans,
const int no_trans,
const T trans_std,
const int sample_per_part,
const int group_size,
const int part_size,
const int num_classes,
const int channels_each_class)
{
CUDA_KERNEL_LOOP(index, count)
{
// The output is in order (n, ctop, ph, pw)
int pw = index % pooled_width;
int ph = (index / pooled_width) % pooled_height;
int ctop = (index / pooled_width / pooled_height) % output_dim;
int n = index / pooled_width / pooled_height / output_dim;
// [start, end) interval for spatial sampling
const T *offset_bottom_rois = bottom_rois + n * 5;
int roi_batch_ind = offset_bottom_rois[0];
T roi_start_w = static_cast<T>(round(offset_bottom_rois[1])) * spatial_scale - 0.5;
T roi_start_h = static_cast<T>(round(offset_bottom_rois[2])) * spatial_scale - 0.5;
T roi_end_w = static_cast<T>(round(offset_bottom_rois[3]) + 1.) * spatial_scale - 0.5;
T roi_end_h = static_cast<T>(round(offset_bottom_rois[4]) + 1.) * spatial_scale - 0.5;
// Force too small ROIs to be 1x1
T roi_width = max(roi_end_w - roi_start_w, 0.1); //avoid 0
T roi_height = max(roi_end_h - roi_start_h, 0.1);
// Compute w and h at bottom
T bin_size_h = roi_height / static_cast<T>(pooled_height);
T bin_size_w = roi_width / static_cast<T>(pooled_width);
T sub_bin_size_h = bin_size_h / static_cast<T>(sample_per_part);
T sub_bin_size_w = bin_size_w / static_cast<T>(sample_per_part);
int part_h = floor(static_cast<T>(ph) / pooled_height * part_size);
int part_w = floor(static_cast<T>(pw) / pooled_width * part_size);
int class_id = ctop / channels_each_class;
T trans_x = no_trans ? static_cast<T>(0) : bottom_trans[(((n * num_classes + class_id) * 2) * part_size + part_h) * part_size + part_w] * trans_std;
T trans_y = no_trans ? static_cast<T>(0) : bottom_trans[(((n * num_classes + class_id) * 2 + 1) * part_size + part_h) * part_size + part_w] * trans_std;
T wstart = static_cast<T>(pw) * bin_size_w + roi_start_w;
wstart += trans_x * roi_width;
T hstart = static_cast<T>(ph) * bin_size_h + roi_start_h;
hstart += trans_y * roi_height;
if (top_count[index] <= 0)
{
continue;
}
T diff_val = top_diff[index] / top_count[index];
const T *offset_bottom_data = bottom_data + roi_batch_ind * channels * height * width;
T *offset_bottom_data_diff = bottom_data_diff + roi_batch_ind * channels * height * width;
int gw = floor(static_cast<T>(pw) * group_size / pooled_width);
int gh = floor(static_cast<T>(ph) * group_size / pooled_height);
gw = min(max(gw, 0), group_size - 1);
gh = min(max(gh, 0), group_size - 1);
for (int ih = 0; ih < sample_per_part; ih++)
{
for (int iw = 0; iw < sample_per_part; iw++)
{
T w = wstart + iw * sub_bin_size_w;
T h = hstart + ih * sub_bin_size_h;
// bilinear interpolation
if (w < -0.5 || w > width - 0.5 || h < -0.5 || h > height - 0.5)
{
continue;
}
w = min(max(w, 0.), width - 1.);
h = min(max(h, 0.), height - 1.);
int c = (ctop * group_size + gh) * group_size + gw;
// backward on feature
int x0 = floor(w);
int x1 = ceil(w);
int y0 = floor(h);
int y1 = ceil(h);
T dist_x = w - x0, dist_y = h - y0;
T q00 = (1 - dist_x) * (1 - dist_y);
T q01 = (1 - dist_x) * dist_y;
T q10 = dist_x * (1 - dist_y);
T q11 = dist_x * dist_y;
int bottom_index_base = c * height * width;
atomicAdd(offset_bottom_data_diff + bottom_index_base + y0 * width + x0, q00 * diff_val);
atomicAdd(offset_bottom_data_diff + bottom_index_base + y1 * width + x0, q01 * diff_val);
atomicAdd(offset_bottom_data_diff + bottom_index_base + y0 * width + x1, q10 * diff_val);
atomicAdd(offset_bottom_data_diff + bottom_index_base + y1 * width + x1, q11 * diff_val);
if (no_trans)
{
continue;
}
T U00 = offset_bottom_data[bottom_index_base + y0 * width + x0];
T U01 = offset_bottom_data[bottom_index_base + y1 * width + x0];
T U10 = offset_bottom_data[bottom_index_base + y0 * width + x1];
T U11 = offset_bottom_data[bottom_index_base + y1 * width + x1];
T diff_x = (U11 * dist_y + U10 * (1 - dist_y) - U01 * dist_y - U00 * (1 - dist_y)) * trans_std * diff_val;
diff_x *= roi_width;
T diff_y = (U11 * dist_x + U01 * (1 - dist_x) - U10 * dist_x - U00 * (1 - dist_x)) * trans_std * diff_val;
diff_y *= roi_height;
atomicAdd(bottom_trans_diff + (((n * num_classes + class_id) * 2) * part_size + part_h) * part_size + part_w, diff_x);
atomicAdd(bottom_trans_diff + (((n * num_classes + class_id) * 2 + 1) * part_size + part_h) * part_size + part_w, diff_y);
}
}
}
}
std::tuple<at::Tensor, at::Tensor>
dcn_v2_psroi_pooling_cuda_forward(const at::Tensor &input,
const at::Tensor &bbox,
const at::Tensor &trans,
const int no_trans,
const float spatial_scale,
const int output_dim,
const int group_size,
const int pooled_size,
const int part_size,
const int sample_per_part,
const float trans_std)
{
AT_ASSERTM(input.type().is_cuda(), "input must be a CUDA tensor");
AT_ASSERTM(bbox.type().is_cuda(), "rois must be a CUDA tensor");
AT_ASSERTM(trans.type().is_cuda(), "trans must be a CUDA tensor");
const int batch = input.size(0);
const int channels = input.size(1);
const int height = input.size(2);
const int width = input.size(3);
const int channels_trans = no_trans ? 2 : trans.size(1);
const int num_bbox = bbox.size(0);
AT_ASSERTM(channels == output_dim, "input channels and output channels must equal");
auto pooled_height = pooled_size;
auto pooled_width = pooled_size;
auto out = at::empty({num_bbox, output_dim, pooled_height, pooled_width}, input.options());
long out_size = num_bbox * output_dim * pooled_height * pooled_width;
auto top_count = at::zeros({num_bbox, output_dim, pooled_height, pooled_width}, input.options());
const int num_classes = no_trans ? 1 : channels_trans / 2;
const int channels_each_class = no_trans ? output_dim : output_dim / num_classes;
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
if (out.numel() == 0)
{
THCudaCheck(cudaGetLastError());
return std::make_tuple(out, top_count);
}
dim3 grid(std::min(THCCeilDiv(out_size, 512L), 4096L));
dim3 block(512);
AT_DISPATCH_FLOATING_TYPES(input.type(), "dcn_v2_psroi_pooling_cuda_forward", [&] {
DeformablePSROIPoolForwardKernel<scalar_t><<<grid, block, 0, stream>>>(
out_size,
input.contiguous().data<scalar_t>(),
spatial_scale,
channels,
height, width,
pooled_height,
pooled_width,
bbox.contiguous().data<scalar_t>(),
trans.contiguous().data<scalar_t>(),
no_trans,
trans_std,
sample_per_part,
output_dim,
group_size,
part_size,
num_classes,
channels_each_class,
out.data<scalar_t>(),
top_count.data<scalar_t>());
});
THCudaCheck(cudaGetLastError());
return std::make_tuple(out, top_count);
}
std::tuple<at::Tensor, at::Tensor>
dcn_v2_psroi_pooling_cuda_backward(const at::Tensor &out_grad,
const at::Tensor &input,
const at::Tensor &bbox,
const at::Tensor &trans,
const at::Tensor &top_count,
const int no_trans,
const float spatial_scale,
const int output_dim,
const int group_size,
const int pooled_size,
const int part_size,
const int sample_per_part,
const float trans_std)
{
AT_ASSERTM(out_grad.type().is_cuda(), "out_grad must be a CUDA tensor");
AT_ASSERTM(input.type().is_cuda(), "input must be a CUDA tensor");
AT_ASSERTM(bbox.type().is_cuda(), "bbox must be a CUDA tensor");
AT_ASSERTM(trans.type().is_cuda(), "trans must be a CUDA tensor");
AT_ASSERTM(top_count.type().is_cuda(), "top_count must be a CUDA tensor");
const int batch = input.size(0);
const int channels = input.size(1);
const int height = input.size(2);
const int width = input.size(3);
const int channels_trans = no_trans ? 2 : trans.size(1);
const int num_bbox = bbox.size(0);
AT_ASSERTM(channels == output_dim, "input channels and output channels must equal");
auto pooled_height = pooled_size;
auto pooled_width = pooled_size;
long out_size = num_bbox * output_dim * pooled_height * pooled_width;
const int num_classes = no_trans ? 1 : channels_trans / 2;
const int channels_each_class = no_trans ? output_dim : output_dim / num_classes;
auto input_grad = at::zeros({batch, channels, height, width}, out_grad.options());
auto trans_grad = at::zeros_like(trans);
if (input_grad.numel() == 0)
{
THCudaCheck(cudaGetLastError());
return std::make_tuple(input_grad, trans_grad);
}
dim3 grid(std::min(THCCeilDiv(out_size, 512L), 4096L));
dim3 block(512);
cudaStream_t stream = at::cuda::getCurrentCUDAStream();
AT_DISPATCH_FLOATING_TYPES(out_grad.type(), "dcn_v2_psroi_pooling_cuda_backward", [&] {
DeformablePSROIPoolBackwardAccKernel<scalar_t><<<grid, block, 0, stream>>>(
out_size,
out_grad.contiguous().data<scalar_t>(),
top_count.contiguous().data<scalar_t>(),
num_bbox,
spatial_scale,
channels,
height,
width,
pooled_height,
pooled_width,
output_dim,
input_grad.contiguous().data<scalar_t>(),
trans_grad.contiguous().data<scalar_t>(),
input.contiguous().data<scalar_t>(),
bbox.contiguous().data<scalar_t>(),
trans.contiguous().data<scalar_t>(),
no_trans,
trans_std,
sample_per_part,
group_size,
part_size,
num_classes,
channels_each_class);
});
THCudaCheck(cudaGetLastError());
return std::make_tuple(input_grad, trans_grad);
} |