File size: 2,105 Bytes
6250360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
'''Some helper functions for PyTorch, including:
    - get_mean_and_std: calculate the mean and std value of dataset.
    - msr_init: net parameter initialization.
    - progress_bar: progress bar mimic xlua.progress.
'''
import errno
import os
import sys
import time
import math

import torch.nn as nn
import torch.nn.init as init
from torch.autograd import Variable

__all__ = ['get_mean_and_std', 'init_params', 'mkdir_p', 'AverageMeter']


def get_mean_and_std(dataset):
    '''Compute the mean and std value of dataset.'''
    dataloader = trainloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=2)

    mean = torch.zeros(3)
    std = torch.zeros(3)
    print('==> Computing mean and std..')
    for inputs, targets in dataloader:
        for i in range(3):
            mean[i] += inputs[:,i,:,:].mean()
            std[i] += inputs[:,i,:,:].std()
    mean.div_(len(dataset))
    std.div_(len(dataset))
    return mean, std

def init_params(net):
    '''Init layer parameters.'''
    for m in net.modules():
        if isinstance(m, nn.Conv2d):
            init.kaiming_normal(m.weight, mode='fan_out')
            if m.bias:
                init.constant(m.bias, 0)
        elif isinstance(m, nn.BatchNorm2d):
            init.constant(m.weight, 1)
            init.constant(m.bias, 0)
        elif isinstance(m, nn.Linear):
            init.normal(m.weight, std=1e-3)
            if m.bias:
                init.constant(m.bias, 0)

def mkdir_p(path):
    '''make dir if not exist'''
    try:
        os.makedirs(path)
    except OSError as exc:  # Python >2.5
        if exc.errno == errno.EEXIST and os.path.isdir(path):
            pass
        else:
            raise

class AverageMeter(object):
    """Computes and stores the average and current value"""
    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count