File size: 5,392 Bytes
6250360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
#coding=utf-8
'''
Created on 2016-9-27

@author: dengdan
'''
import matplotlib.pyplot as plt
import numpy as np
import util
        
def hist(x, title = None, normed = False, show = True, save = False, save_path = None, bin_count = 100, bins = None):    
    x = np.asarray(x)
    if len(np.shape(x)) > 1:
#         x = np.reshape(x, np.prod(x.shape))
        x = util.np.flatten(x)
    if bins == None:
        bins = np.linspace(start = min(x), stop = max(x), num = bin_count, endpoint = True, retstep = False)
    plt.figure(num = title)
    plt.hist(x, bins, normed = normed)
    if save:
        if save_path is None:
            raise ValueError
        path = util.io.join_path(save_path, title + '.png')
        save_image(path)
    if show:
        plt.show()
        #util.img.imshow(title, path, block = block)        

def plot_solver_data(solver_path):
    data = util.io.load(solver_path)
    training_losses = data.training_losses
    training_accuracies = data.training_accuracies
    val_losses = data.val_losses
    val_accuracies = data.val_accuracies
    plt.figure(solver_path)
    
    n = len(training_losses)
    x = range(n)
    
    plt.plot(x, training_losses, 'r-', label = 'Training Loss')
    
    if len(training_accuracies) > 0:
        plt.plot(x, training_accuracies, 'r--', label = 'Training Accuracy')
    
    if len(val_losses) > 0:
        n = len(val_losses)
        x = range(n)
        plt.plot(x, val_losses, 'g-', label = 'Validation Loss')
        
        if len(val_accuracies) > 0:
            plt.plot(x, val_accuracies, 'g--', label = 'Validation Accuracy')
    plt.legend()
    plt.show()
    
    
def rectangle(xy, width, height, color = 'red', linewidth = 1, fill = False, alpha = None, axis = None):
    """
    draw a rectangle on plt axis
    """
    import matplotlib.patches as patches
    rect = patches.Rectangle(
        xy = xy,
        width = width,
        height = height,
        alpha = alpha,
        color = color,
        fill = fill,
        linewidth = linewidth
    )
    if axis is not None:
        axis.add_patch(rect)
    return rect
    
rect = rectangle

def maximize_figure():
    mng = plt.get_current_fig_manager()
    mng.full_screen_toggle()

def line(xy_start, xy_end, color = 'red', linewidth = 1, alpha = None, axis = None):
    """
    draw a line on plt axis
    """
    from matplotlib.lines import Line2D 
    num = 100
    xdata = np.linspace(xy_start[0], xy_end[0], num = num)
    ydata = np.linspace(xy_start[1], xy_end[1], num = num)
    line = Line2D(
        alpha = alpha,
        color = color,
        linewidth = linewidth,
        xdata = xdata,
        ydata = ydata
    )
    if axis is not None:
        axis.add_line(line)
    return line

def imshow(title = None, img = None, gray = False):
    show_images([img], [title], gray = gray)

def show_images(images, titles = None, shape = None, share_axis = False, 
                bgr2rgb = False, maximized = False, 
                show = True, gray = False, save = False, colorbar = False, 
                path = None, axis_off = False, vertical = False, subtitle = None):
        
    if shape == None:
        if vertical:
            shape = (len(images), 1)
        else:
            shape = (1, len(images))
        
    ret_axes = []
    ax0 = None
    for idx, img in enumerate(images): 
        if bgr2rgb:
            img = util.img.bgr2rgb(img)
        loc = (idx / shape[1], idx % shape[1])
        if idx == 0:
            ax = plt.subplot2grid(shape, loc)
            ax0 = ax
        else:
            if share_axis:
                ax = plt.subplot2grid(shape, loc, sharex = ax0, sharey = ax0)
            else:
                ax = plt.subplot2grid(shape, loc)
        if len(np.shape(img)) == 2 and gray:
            img_ax = ax.imshow(img, cmap = 'gray')
        else:
            img_ax = ax.imshow(img)
        
        if len(np.shape(img)) == 2 and colorbar:
            plt.colorbar(img_ax, ax = ax)
        if titles != None:
            ax.set_title(titles[idx])
        
        if axis_off:
            plt.axis('off')
#             plt.xticks([]), plt.yticks([])
        ret_axes.append(ax)
        
    if subtitle is not None:
        set_subtitle(subtitle)
    if maximized:
        maximize_figure()
        
    if save:
        if path is None:
            raise ValueError('path can not be None when save is True')
        save_image(path)
    if show:
        plt.show()
    return ret_axes

def save_image(path, img = None, dpi = 150):
    path = util.io.get_absolute_path(path)
    util.io.make_parent_dir(path)
    if img is None:
        plt.gcf().savefig(path, dpi = dpi)
    else:
        plt.imsave(path, img)

imwrite = save_image
    
def to_ROI(ax, ROI):
    xy1, xy2 = ROI
    xmin, ymin = xy1
    xmax, ymax = xy2
    ax.set_xlim(xmin, xmax)
    #ax.extent
    ax.set_ylim(ymax, ymin)
    
def set_subtitle(title, fontsize = 12):
    plt.gcf().suptitle(title, fontsize=fontsize)

def show(maximized = False):
    if maximized:
        maximize_figure()
    plt.show()
    
def draw():
    plt.gcf().canvas.draw()

def get_random_line_style():
    colors = ['r', 'g', 'b']
    line_types = ['-']#, '--', '-.', ':']
    idx = util.rand.randint(len(colors))
    color = colors[idx]
    idx = util.rand.randint(len(line_types))
    line_type = line_types[idx]
    return color + line_type