File size: 9,710 Bytes
6250360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
from __future__ import print_function


try:
    import tensorflow as tf
    from tensorflow.python.ops import nn
    relu = nn.relu
    slim = tf.contrib.slim
    sigmoid = nn.sigmoid
    softmax = nn.softmax
except:
    print("tensorflow is not installed, util.tf can not be used.")

def is_gpu_available(cuda_only=True):
  """
  code from https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/platform/test.py
  Returns whether TensorFlow can access a GPU.
  Args:
    cuda_only: limit the search to CUDA gpus.
  Returns:
    True iff a gpu device of the requested kind is available.
  """
  from tensorflow.python.client import device_lib as _device_lib

  if cuda_only:
    return any((x.device_type == 'GPU')
               for x in _device_lib.list_local_devices())
  else:
    return any((x.device_type == 'GPU' or x.device_type == 'SYCL')
               for x in _device_lib.list_local_devices())



def get_available_gpus(num_gpus = None):
    """
    Modified on http://stackoverflow.com/questions/38559755/how-to-get-current-available-gpus-in-tensorflow
    However, the original code will occupy all available gpu memory.
    The modified code need a parameter: num_gpus. It does nothing but return the device handler name
    It will work well on single-maching-training, but I don't know whether it will work well on a cluster.
    """
    if num_gpus == None:
        from tensorflow.python.client import device_lib as _device_lib
        local_device_protos = _device_lib.list_local_devices()
        return [x.name for x in local_device_protos if x.device_type == 'GPU']
    else:
        return ['/gpu:%d'%(idx) for idx in xrange(num_gpus)]

def get_latest_ckpt(path):
# tf.train.latest_checkpoint
    import util
    path = util.io.get_absolute_path(path)
    if util.io.is_dir(path):
        ckpt = tf.train.get_checkpoint_state(path)
        if ckpt is not None:
            ckpt_path = ckpt.model_checkpoint_path
        else:
            ckpt_path = None
    else:
        ckpt_path = path;
    return ckpt_path

def get_all_ckpts(path):
    ckpt = tf.train.get_checkpoint_state(path)
    all_ckpts = ckpt.all_model_checkpoint_paths
    ckpts = [str(c) for c in all_ckpts]
    return ckpts

def get_iter(ckpt):
    import util
    iter_ = int(util.str.find_all(ckpt, '.ckpt-\d+')[0].split('-')[-1])
    return iter_

def get_init_fn(checkpoint_path, train_dir, ignore_missing_vars = False,
                checkpoint_exclude_scopes = None, model_name = None, checkpoint_model_scope = None):
    """
    code from github/SSD-tensorflow/tf_utils.py
    Returns a function run by the chief worker to warm-start the training.
    Note that the init_fn is only run when initializing the model during the very
    first global step.

    checkpoint_path: the checkpoint to be restored
    train_dir: the directory where checkpoints are stored during training.
    ignore_missing_vars: if False and there are variables in the model but not in the checkpoint, an error will be raised.
    checkpoint_model_scope and model_name: if the root scope of checkpoints and the model in session is different,
            (but the sub-scopes are all the same), specify them clearly
    checkpoint_exclude_scopes: variables to be excluded when restoring from checkpoint_path.
    Returns:
      An init function run by the supervisor.
    """
    import util
    if util.str.is_none_or_empty(checkpoint_path):
        return None
    # Warn the user if a checkpoint exists in the train_dir. Then ignore.
    if tf.train.latest_checkpoint(train_dir):
        tf.logging.info(
            'Ignoring --checkpoint_path because a checkpoint already exists in %s'
            % train_dir)
        return None

    exclusions = []
    if checkpoint_exclude_scopes:
        exclusions = [scope.strip()
                      for scope in checkpoint_exclude_scopes.split(',')]

    # TODO(sguada) variables.filter_variables()
    variables_to_restore = []
    for var in slim.get_model_variables():
        excluded = False
        for exclusion in exclusions:
            if var.op.name.startswith(exclusion):
                excluded = True
                break
        if not excluded:
            variables_to_restore.append(var)
    # Change model scope if necessary.
    if checkpoint_model_scope is not None:
        variables_to_restore = {checkpoint_model_scope + '/' + var.op.name : var for var in variables_to_restore}
        tf.logging.info('variables_to_restore: %r'%(variables_to_restore))
    checkpoint_path = get_latest_ckpt(checkpoint_path)
    tf.logging.info('Fine-tuning from %s. Ignoring missing vars: %s' % (checkpoint_path, ignore_missing_vars))
    print ('checkpoint_path', checkpoint_path)
    return slim.assign_from_checkpoint_fn(
        checkpoint_path,
        variables_to_restore,
        ignore_missing_vars=ignore_missing_vars)


def get_variables_to_train(flags = None):
    """code from github/SSD-tensorflow/tf_utils.py
    Returns a list of variables to train.

    Returns:
      A list of variables to train by the optimizer.
    """
    if flags is None or flags.trainable_scopes is None:
        return tf.trainable_variables()
    else:
        scopes = [scope.strip() for scope in flags.trainable_scopes.split(',')]

    variables_to_train = []
    for scope in scopes:
        variables = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope)
        variables_to_train.extend(variables)
    return variables_to_train

def Print(tensor, data, msg = '', file = None, mode = 'w'):
    from tensorflow.python.ops import control_flow_ops
    import util
    def np_print(*args):
        if util.str.contains(msg, '%'):
            message = msg%tuple(args)
        else:
            message = msg + ' %'*len(args)%tuple(args)
        if file is not None:
            file_path = util.io.get_absolute_path(file)
            print('writting message to file(%s):'%(file_path), message)
            with open(file_path, mode) as f:
                print(message, file = f)
        else:
            print(message)
    return control_flow_ops.with_dependencies([tf.py_func(np_print, data, [])], tensor)

def get_variable_names_in_checkpoint(path, return_shapes = False, return_reader = False):
    """
    Args:
        path: the path to training directory containing checkpoints,
            or path to checkpoint
    Return:
        a list of variable names in the checkpoint
    """
    import util
    ckpt = get_latest_ckpt(path)
    ckpt_reader = tf.train.NewCheckpointReader(ckpt)
    ckpt_vars = ckpt_reader.get_variable_to_shape_map()
    names = [var for var in ckpt_vars]
    if return_shapes:
        return names, ckpt_vars
    def get(name):
        return ckpt_reader.get_tensor(name)
    if return_reader:
        return names, get
    return names



def min_area_rect(xs, ys):
    import util
    rects = tf.py_func(util.img.min_area_rect, [xs, ys], xs.dtype)
    rects.set_shape([None, 5])
    return rects


def gpu_config(config = None, allow_growth = None, gpu_memory_fraction = None):
    if config is None:
        config = tf.ConfigProto()

    if allow_growth is not None:
        config.gpu_options.allow_growth = allow_growth

    if gpu_memory_fraction is not None:
        config.gpu_options.per_process_gpu_memory_fraction = gpu_memory_fraction

    return config

def wait_for_checkpoint(path):
    from tensorflow.contrib.training.python.training import evaluation
    return evaluation.checkpoints_iterator(path)
    
def focal_loss(labels, logits, gamma = 2.0, alpha = 0.75, normalize = True):
    labels = tf.where(labels > 0, tf.ones_like(labels), tf.zeros_like(labels))
    labels = tf.cast(labels, tf.float32)
    probs = tf.sigmoid(logits)
    CE = tf.nn.sigmoid_cross_entropy_with_logits(labels = labels, logits = logits)

    alpha_t = tf.ones_like(logits) * alpha
    alpha_t = tf.where(labels > 0, alpha_t, 1.0 - alpha_t)
    probs_t = tf.where(labels > 0, probs, 1.0 - probs)

    focal_matrix = alpha_t * tf.pow((1.0 - probs_t), gamma)
    fl = focal_matrix * CE

    fl = tf.reduce_sum(fl)
    if normalize:
        #n_pos = tf.reduce_sum(labels)
        #fl = fl / tf.cast(n_pos, tf.float32)
        total_weights = tf.stop_gradient(tf.reduce_sum(focal_matrix))
        fl = fl / total_weights
    return fl


def focal_loss_layer_initializer(sigma = 0.01, pi = 0.01):
    import numpy as np
    b0 = - np.log((1 - pi) / pi)
    return tf.random_normal_initializer(stddev = sigma), \
            tf.constant_initializer(b0)


def sum_gradients(clone_grads, do_summary = False):                        
    averaged_grads = []
    for grad_and_vars in zip(*clone_grads):
        grads = []
        var = grad_and_vars[0][1]
        try:
            for g, v in grad_and_vars:
                assert v == var
                grads.append(g)
            grad = tf.add_n(grads, name = v.op.name + '_summed_gradients')
        except:
            import pdb
            pdb.set_trace()
        
        averaged_grads.append((grad, v))
        
        if do_summary:
            tf.summary.histogram("variables_and_gradients_" + grad.op.name, grad)
            tf.summary.histogram("variables_and_gradients_" + v.op.name, v)
            tf.summary.scalar("variables_and_gradients_" + grad.op.name+\
                  '_mean/var_mean', tf.reduce_mean(grad)/tf.reduce_mean(var))
            tf.summary.scalar("variables_and_gradients_" + v.op.name+'_mean',tf.reduce_mean(var))
    return averaged_grads

def get_update_op():
    """
    Extremely important for BatchNorm
    """
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    if update_ops:
        return tf.group(*update_ops)
    return None