Spaces:
Build error
Build error
File size: 9,624 Bytes
6250360 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
from maskrcnn_benchmark.structures.bounding_box import BoxList
import cv2
# TODO check if want to return a single BoxList or a composite
# object
class KEPostProcessor(nn.Module):
"""
From the results of the CNN, post process the kes
by taking the ke corresponding to the class with max
probability (which are of fixed size and directly output
by the CNN) and return the kes in the ke field of the BoxList.
If a keer object is passed, it will additionally
project the kes in the image according to the locations in boxes,
"""
def __init__(self, keer=None):
super(KEPostProcessor, self).__init__()
self.keer = keer
def forward(self, x, boxes):
"""
Arguments:
x (Tensor): the ke logits
boxes (list[BoxList]): bounding boxes that are used as
reference, one for ech image
Returns:
results (list[BoxList]): one BoxList for each image, containing
the extra field ke
"""
# ke_prob = x.sigmoid()
# select kes coresponding to the predicted classes
num_proposals = x.shape[0]
labels = [bbox.get_field("labels") for bbox in boxes]
labels = torch.cat(labels)
index = torch.arange(num_proposals, device=labels.device)
####### outputs
ke_prob = x[index]
# print("labels", labels)
# print("x",x.size())
# print("ke_",ke_prob.size())
# assert(0)
boxes_per_image = [len(box) for box in boxes]
ke_prob = ke_prob.split(boxes_per_image, dim=0)
if self.keer:
ke_prob = self.keer(ke_prob, boxes)
results = []
for prob, box in zip(ke_prob, boxes):
bbox = BoxList(box.bbox, box.size, mode="xyxy")
for field in box.fields():
bbox.add_field(field, box.get_field(field))
bbox.add_field("ke", prob)
results.append(bbox)
return results
class KEPostProcessorCOCOFormat(KEPostProcessor):
"""
From the results of the CNN, post process the results
so that the kes are pasted in the image, and
additionally convert the results to COCO format.
"""
def forward(self, x, boxes):
# import pycocotools.mask as mask_util
import numpy as np
results = super(KEPostProcessorCOCOFormat, self).forward(x, boxes)
for result in results:
kes = result.get_field("ke").cpu()
rles = [
ke_util.encode(np.array(ke[0, :, :, np.newaxis], order="F"))[0]
for ke in kes
]
for rle in rles:
rle["counts"] = rle["counts"].decode("utf-8")
result.add_field("ke", rles)
return results
# the next two functions should be merged inside keer
# but are kept here for the moment while we need them
# temporarily gor paste_ke_in_image
def expand_boxes(boxes, scale):
w_half = (boxes[:, 2] - boxes[:, 0]) * .5
h_half = (boxes[:, 3] - boxes[:, 1]) * .5
x_c = (boxes[:, 2] + boxes[:, 0]) * .5
y_c = (boxes[:, 3] + boxes[:, 1]) * .5
w_half *= scale
h_half *= scale
boxes_exp = torch.zeros_like(boxes)
boxes_exp[:, 0] = x_c - w_half
boxes_exp[:, 2] = x_c + w_half
boxes_exp[:, 1] = y_c - h_half
boxes_exp[:, 3] = y_c + h_half
return boxes_exp
def expand_kes(ke, padding):
N = ke.shape[0]
M = ke.shape[-1]
# print("NM ", N ,M)
pad2 = 2 * padding
scale = float(M + pad2) / M
padded_ke = ke.new_zeros((N, 1, M + pad2, M + pad2))
padded_ke[:, :, padding:-padding, padding:-padding] = ke
# print("padded_ke ", padded_ke.size())
return padded_ke, scale
def paste_ke_in_image(ke, box, im_h, im_w, thresh=0.5, padding=1):
# print("ke ", ke.size(), ke[None].size())
padded_ke, scale = expand_kes(ke[None], padding=padding)
ke = padded_ke[0, 0]
box = expand_boxes(box[None], scale)[0]
box = box.to(dtype=torch.int32)
TO_REMOVE = 1
w = int(box[2] - box[0] + TO_REMOVE)
h = int(box[3] - box[1] + TO_REMOVE)
w = max(w, 1)
h = max(h, 1)
# Set shape to [batchxCxHxW]
ke = ke.expand((1, 1, -1, -1))
# print("ke 2", ke.size())
# Resize ke
ke = ke.to(torch.float32)
ke = F.interpolate(ke, size=(h, w), mode='bilinear', align_corners=False)
ke = ke[0][0]
# print("ke3 ", ke.size())
if thresh >= 0:
ke = ke > thresh
else:
# for visualization and debugging, we also
# allow it to return an unmodified ke
ke = (ke * 255).to(torch.uint8)
im_ke = torch.zeros((im_h, im_w), dtype=torch.uint8)
x_0 = max(box[0], 0)
x_1 = min(box[2] + 1, im_w)
y_0 = max(box[1], 0)
y_1 = min(box[3] + 1, im_h)
im_ke[y_0:y_1, x_0:x_1] = ke[
(y_0 - box[1]) : (y_1 - box[1]), (x_0 - box[0]) : (x_1 - box[0])
]
# print("im_ke ", im_ke.size())
return im_ke
def scores_to_probs(scores):
"""Transforms CxHxW of scores to probabilities spatially."""
channels = scores.shape[0]
for c in range(channels):
temp = scores[c, :, :]
max_score = temp.max()
temp = np.exp(temp - max_score) / np.sum(np.exp(temp - max_score))
scores[c, :, :] = temp
return scores
def heatmaps_to_kes(maps, rois):
# This function converts a discrete image coordinate in a HEATMAP_SIZE x
# HEATMAP_SIZE image to a continuous ke coordinate. We maintain
# consistency with ke_to_heatmap_labels by using the conversion from
# Heckbert 1990: c = d + 0.5, where d is a discrete coordinate and c is a
# continuous coordinate.
rois =rois.numpy()
maps = maps.numpy()
offset_x = rois[:, 0]
offset_y = rois[:, 1]
widths = rois[:, 2] - rois[:, 0]
heights = rois[:, 3] - rois[:, 1]
widths = np.maximum(widths, 1)
heights = np.maximum(heights, 1)
widths_ceil = np.ceil(widths)
heights_ceil = np.ceil(heights)
# NCHW to NHWC for use with OpenCV
maps = np.transpose(maps, [0, 2, 3, 1])
# min_size = cfg.KRCNN.INFERENCE_MIN_SIZE
num_kes = 10
xy_preds = np.zeros(
(len(rois), 4, num_kes), dtype=np.float32)
for i in range(len(rois)):
# if min_size > 0:
# roi_map_width = int(np.maximum(widths_ceil[i], min_size))
# roi_map_height = int(np.maximum(heights_ceil[i], min_size))
# else:
# roi_map_width = widths_ceil[i]
# roi_map_height = heights_ceil[i]
roi_map_width = int(widths_ceil[i])
roi_map_height = int(heights_ceil[i])
width_correction = widths[i] / roi_map_width
height_correction = heights[i] / roi_map_height
roi_map = cv2.resize(
maps[i], (roi_map_width, roi_map_height),
interpolation=cv2.INTER_CUBIC)
# Bring back to CHW
roi_map = np.transpose(roi_map, [2, 0, 1])
roi_map_probs = scores_to_probs(roi_map.copy())
w = roi_map.shape[2]
for k in range(num_kes):
pos = roi_map[k, :, :].argmax()
x_int = pos % w
y_int = (pos - x_int) // w
assert (roi_map_probs[k, y_int, x_int] ==
roi_map_probs[k, :, :].max())
x = (x_int + 0.5) * width_correction
y = (y_int + 0.5) * height_correction
xy_preds[i, 0, k] = x + offset_x[i]
xy_preds[i, 1, k] = y + offset_y[i]
xy_preds[i, 2, k] = roi_map[k, y_int, x_int]
xy_preds[i, 3, k] = roi_map_probs[k, y_int, x_int]
return xy_preds
class KEer(object):
"""
Projects a set of kes in an image on the locations
specified by the bounding boxes
"""
def __init__(self, threshold=0.5, padding=1):
self.threshold = threshold
self.padding = padding
def forward_single_image(self, kes, boxes):
boxes = boxes.convert("xyxy")
im_w, im_h = boxes.size
# print("KEer kes.size()", kes.size(), kes[0].size(), kes[0][0].size())
# assert(0)
# res = [
# paste_ke_in_image(ke[0], box, im_h, im_w, self.threshold, self.padding)
# for ke, box in zip(kes, boxes.bbox)
# ]
res = heatmaps_to_kes(kes, boxes.bbox)
if len(res) > 0:
# res = torch.stack(res, dim=0)[:, None]
res = torch.from_numpy(res)
else:
res = kes.new_empty((0, 1, kes.shape[-2], kes.shape[-1]))
print("res inference.py", res.size())
return res
def __call__(self, kes, boxes):
if isinstance(boxes, BoxList):
boxes = [boxes]
# Make some sanity check
assert len(boxes) == len(kes), "kes and boxes should have the same length."
# TODO: Is this JIT compatible?
# If not we should make it compatible.
results = []
for ke, box in zip(kes, boxes):
assert ke.shape[0] == len(box), "Number of objects should be the same."
# print("ke inference.py", ke.size())
result = self.forward_single_image(ke, box)
results.append(result)
return results
def make_roi_ke_post_processor(cfg):
if cfg.MODEL.ROI_KE_HEAD.POSTPROCESS_KES:
ke_threshold = cfg.MODEL.ROI_KE_HEAD.POSTPROCESS_KES_THRESHOLD
keer = KEer(threshold=ke_threshold, padding=1)
else:
keer = None
ke_post_processor = KEPostProcessor(keer)
return ke_post_processor
|