File size: 7,749 Bytes
6250360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch

from maskrcnn_benchmark.modeling.box_coder import BoxCoder
from maskrcnn_benchmark.structures.bounding_box import BoxList
from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist
from maskrcnn_benchmark.structures.boxlist_ops import boxlist_nms
from maskrcnn_benchmark.structures.boxlist_ops import remove_small_boxes

from ..utils import cat
from .utils import permute_and_flatten

class RPNPostProcessor(torch.nn.Module):
    """
    Performs post-processing on the outputs of the RPN boxes, before feeding the
    proposals to the heads
    """

    def __init__(
        self,
        pre_nms_top_n,
        post_nms_top_n,
        nms_thresh,
        min_size,
        box_coder=None,
        fpn_post_nms_top_n=None,
    ):
        """
        Arguments:
            pre_nms_top_n (int)
            post_nms_top_n (int)
            nms_thresh (float)
            min_size (int)
            box_coder (BoxCoder)
            fpn_post_nms_top_n (int)
        """
        super(RPNPostProcessor, self).__init__()
        self.pre_nms_top_n = pre_nms_top_n  # 12000
        self.post_nms_top_n = post_nms_top_n  # 2000
        self.nms_thresh = nms_thresh  # 0.7
        self.min_size = min_size  # 0

        if box_coder is None:
            box_coder = BoxCoder(weights=(1.0, 1.0, 1.0, 1.0))
        self.box_coder = box_coder

        if fpn_post_nms_top_n is None:
            fpn_post_nms_top_n = post_nms_top_n
        self.fpn_post_nms_top_n = fpn_post_nms_top_n  # 2000

    def add_gt_proposals(self, proposals, targets):
        """
        Arguments:
            proposals: list[BoxList]
            targets: list[BoxList]
        """
        # Get the device we're operating on
        device = proposals[0].bbox.device

        gt_boxes = [target.copy_with_fields([]) for target in targets]

        # later cat of bbox requires all fields to be present for all bbox
        # so we need to add a dummy for objectness that's missing
        for gt_box in gt_boxes:
            gt_box.add_field("objectness", torch.ones(len(gt_box), device=device))

        proposals = [
            cat_boxlist((proposal, gt_box))
            for proposal, gt_box in zip(proposals, gt_boxes)
        ]

        return proposals

    def forward_for_single_feature_map(self, anchors, objectness, box_regression):
        """
        Arguments:
            anchors: list[BoxList] # [image,number,[n,4]]
            objectness: tensor of size N, A, H, W
            box_regression: tensor of size N, A * 4, H, W
        """
        device = objectness.device
        N, A, H, W = objectness.shape
        # put in the same format as anchors
        objectness = permute_and_flatten(objectness, N, A, 1, H, W).view(N, -1) # N H*W*A*1
        objectness = objectness.sigmoid()
        box_regression = permute_and_flatten(box_regression, N, A, 18, H, W) # N H*W*A 4
        num_anchors = A * H * W  # 391040 97760

        pre_nms_top_n = min(self.pre_nms_top_n, num_anchors)  #12000
        objectness, topk_idx = objectness.topk(pre_nms_top_n, dim=1, sorted=True)
        # objectness = objectness.cpu()
        batch_idx = torch.arange(N, device=device)[:, None]
        box_regression = box_regression[batch_idx, topk_idx]
        image_shapes = [box.size for box in anchors]
        concat_anchors = torch.cat([a.bbox for a in anchors], dim=0)
        concat_anchors = concat_anchors.reshape(N, -1, 4)[batch_idx, topk_idx]
        proposals = self.box_coder.decode_iou(
            box_regression.view(-1, 18), concat_anchors.view(-1, 4)
        )

        proposals = proposals.view(N, -1, 4)

        result = []
        for proposal, score, im_shape in zip(proposals, objectness, image_shapes):
            boxlist = BoxList(proposal, im_shape, mode="xyxy")
            boxlist.add_field("objectness", score)
            boxlist = boxlist.clip_to_image(remove_empty=False)
            boxlist = remove_small_boxes(boxlist, self.min_size)
            boxlist = boxlist_nms(
                boxlist,
                self.nms_thresh,
                max_proposals=self.post_nms_top_n,
                score_field="objectness",
            )
            result.append(boxlist)
        return result

    def forward(self, anchors, objectness, box_regression, targets=None):
        """
        Arguments:
            anchors: list[list[BoxList]]
            objectness: list[tensor]
            box_regression: list[tensor]

        Returns:
            boxlists (list[BoxList]): the post-processed anchors, after
                applying box decoding and NMS
        """
        sampled_boxes = []
        num_levels = len(objectness)     # classification
        anchors = list(zip(*anchors))    # [image,number,[n,4]]
        # i =-1
        for a, o, b in zip(anchors, objectness, box_regression):
            sampled_boxes.append(self.forward_for_single_feature_map(a, o, b))


        boxlists = list(zip(*sampled_boxes))
        boxlists = [cat_boxlist(boxlist) for boxlist in boxlists]

        if num_levels > 1:
            boxlists = self.select_over_all_levels(boxlists)

        # append ground-truth bboxes to proposals
        if self.training and targets is not None:
            boxlists = self.add_gt_proposals(boxlists, targets)

        return boxlists

    def select_over_all_levels(self, boxlists):
        num_images = len(boxlists)
        # different behavior during training and during testing:
        # during training, post_nms_top_n is over *all* the proposals combined, while
        # during testing, it is over the proposals for each image
        # TODO resolve this difference and make it consistent. It should be per image,
        # and not per batch
        if self.training:
            objectness = torch.cat(
                [boxlist.get_field("objectness") for boxlist in boxlists], dim=0
            )
            box_sizes = [len(boxlist) for boxlist in boxlists]
            post_nms_top_n = min(self.fpn_post_nms_top_n, len(objectness))
            _, inds_sorted = torch.topk(objectness, post_nms_top_n, dim=0, sorted=True)
            inds_mask = torch.zeros_like(objectness, dtype=torch.uint8)
            inds_mask[inds_sorted] = 1
            inds_mask = inds_mask.split(box_sizes)
            for i in range(num_images):
                boxlists[i] = boxlists[i][inds_mask[i]]
        else:
            for i in range(num_images):
                objectness = boxlists[i].get_field("objectness")
                post_nms_top_n = min(self.fpn_post_nms_top_n, len(objectness))
                _, inds_sorted = torch.topk(
                    objectness, post_nms_top_n, dim=0, sorted=True
                )
                boxlists[i] = boxlists[i][inds_sorted]
        return boxlists


def make_rpn_postprocessor(config, rpn_box_coder, is_train):
    fpn_post_nms_top_n = config.MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN  # 2000
    if not is_train:
        fpn_post_nms_top_n = config.MODEL.RPN.FPN_POST_NMS_TOP_N_TEST

    pre_nms_top_n = config.MODEL.RPN.PRE_NMS_TOP_N_TRAIN  # 12000
    post_nms_top_n = config.MODEL.RPN.POST_NMS_TOP_N_TRAIN  # 2000
    if not is_train:
        pre_nms_top_n = config.MODEL.RPN.PRE_NMS_TOP_N_TEST
        post_nms_top_n = config.MODEL.RPN.POST_NMS_TOP_N_TEST
    nms_thresh = config.MODEL.RPN.NMS_THRESH  # 0.7
    min_size = config.MODEL.RPN.MIN_SIZE  # 0
    box_selector = RPNPostProcessor(
        pre_nms_top_n=pre_nms_top_n,  #12000
        post_nms_top_n=post_nms_top_n,  #2000
        nms_thresh=nms_thresh,  # 0.7
        min_size=min_size,  # 0
        box_coder=rpn_box_coder,
        fpn_post_nms_top_n=fpn_post_nms_top_n,  #2000
    )
    return box_selector