Spaces:
Build error
Build error
File size: 12,067 Bytes
6250360 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
import torch.nn.functional as F
from torch import nn
import math
from maskrcnn_benchmark.modeling import registry
from maskrcnn_benchmark.modeling.box_coder import BoxCoder
from maskrcnn_benchmark.modeling.rpn.retinanet.retinanet import build_retinanet
from maskrcnn_benchmark.modeling.rpn.fcos.fcos import build_fcos
from .loss import make_rpn_loss_evaluator
from .anchor_generator import make_anchor_generator
from .inference import make_rpn_postprocessor
class RPNHeadConvRegressor(nn.Module):
"""
A simple RPN Head for classification and bbox regression
"""
def __init__(self, cfg, in_channels, num_anchors):
"""
Arguments:
cfg : config
in_channels (int): number of channels of the input feature
num_anchors (int): number of anchors to be predicted
"""
super(RPNHeadConvRegressor, self).__init__()
self.cls_logits = nn.Conv2d(in_channels, num_anchors, kernel_size=1, stride=1)
self.bbox_pred = nn.Conv2d(
in_channels, num_anchors * 4, kernel_size=1, stride=1
)
for l in [self.cls_logits, self.bbox_pred]:
torch.nn.init.normal_(l.weight, std=0.01)
torch.nn.init.constant_(l.bias, 0)
def forward(self, x):
assert isinstance(x, (list, tuple))
logits = [self.cls_logits(y) for y in x]
bbox_reg = [self.bbox_pred(y) for y in x]
return logits, bbox_reg
class RPNHeadFeatureSingleConv(nn.Module):
"""
Adds a simple RPN Head with one conv to extract the feature
"""
def __init__(self, cfg, in_channels):
"""
Arguments:
cfg : config
in_channels (int): number of channels of the input feature
"""
super(RPNHeadFeatureSingleConv, self).__init__()
self.conv = nn.Conv2d(
in_channels, in_channels, kernel_size=3, stride=1, padding=1
)
for l in [self.conv]:
torch.nn.init.normal_(l.weight, std=0.01)
torch.nn.init.constant_(l.bias, 0)
self.out_channels = in_channels
def forward(self, x):
assert isinstance(x, (list, tuple))
x = [F.relu(self.conv(z)) for z in x]
return x
@registry.RPN_HEADS.register("SingleConvRPNHead_1")
class RPNHead(nn.Module):
"""
Adds a simple RPN Head with classification and regression heads
"""
def __init__(self, cfg, in_channels, num_anchors):
"""
Arguments:
cfg : config
in_channels (int): number of channels of the input feature
num_anchors (int): number of anchors to be predicted
"""
super(RPNHead, self).__init__()
self.conv = nn.Conv2d(
in_channels, in_channels, kernel_size=3, stride=1, padding=1
)
self.cls_logits = nn.Conv2d(in_channels, num_anchors, kernel_size=1, stride=1)
self.bbox_pred_new = nn.Conv2d(
in_channels, num_anchors * 18, kernel_size=1, stride=1
)
for l in [self.conv, self.cls_logits, self.bbox_pred_new]:
torch.nn.init.normal_(l.weight, std=0.01)
torch.nn.init.constant_(l.bias, 0)
def forward(self, x):
logits = []
bbox_reg = []
for feature in x:
t = F.relu(self.conv(feature))
logits.append(self.cls_logits(t))
bbox_reg.append(self.bbox_pred_new(t))
return logits, bbox_reg
class RPNModule(torch.nn.Module):
"""
Module for RPN computation. Takes feature maps from the backbone and RPN
proposals and losses. Works for both FPN and non-FPN.
"""
def __init__(self, cfg, in_channels):
super(RPNModule, self).__init__()
self.cfg = cfg.clone()
anchor_generator = make_anchor_generator(cfg)
rpn_head = registry.RPN_HEADS[cfg.MODEL.RPN.RPN_HEAD]
head = rpn_head(
cfg, in_channels, anchor_generator.num_anchors_per_location()[0]
)
rpn_box_coder = BoxCoder(weights=(1.0, 1.0, 1.0, 1.0))
box_selector_train = make_rpn_postprocessor(cfg, rpn_box_coder, is_train=True)
box_selector_test = make_rpn_postprocessor(cfg, rpn_box_coder, is_train=False)
loss_evaluator = make_rpn_loss_evaluator(cfg, rpn_box_coder)
self.anchor_generator = anchor_generator
self.head = head
self.box_selector_train = box_selector_train
self.box_selector_test = box_selector_test
self.loss_evaluator = loss_evaluator
def forward(self, images, features, targets=None, prefix=''):
"""
Arguments:
images (ImageList): images for which we want to compute the predictions
features (list[Tensor]): features computed from the images that are
used for computing the predictions. Each tensor in the list
correspond to different feature levels
targets (list[BoxList): ground-truth boxes present in the image (optional)
Returns:
boxes (list[BoxList]): the predicted boxes from the RPN, one BoxList per
image.
losses (dict[Tensor]): the losses for the model during training. During
testing, it is an empty dict.
"""
objectness, rpn_box_regression = self.head(features) # len = 5
anchors = self.anchor_generator(images, features)
if self.training:
return self._forward_train(anchors, objectness,
rpn_box_regression, targets, prefix)
else:
return self._forward_test(anchors, objectness, rpn_box_regression)
def _forward_train(self, anchors, objectness, rpn_box_regression, # [image,number,[n,4]]
targets, prefix):
if self.cfg.MODEL.RPN_ONLY:
# When training an RPN-only model, the loss is determined by the
# predicted objectness and rpn_box_regression values and there is
# no need to transform the anchors into predicted boxes; this is an
# optimization that avoids the unnecessary transformation.
boxes = anchors
else:
# print('\n---end-to-end model---\n')
# For end-to-end models, anchors must be transformed into boxes and
# sampled into a training batch.
with torch.no_grad():
boxes = self.box_selector_train(
anchors, objectness, rpn_box_regression, targets
)
anchors_new = list(zip(*anchors))
regress_new = regress_to_box(anchors_new, rpn_box_regression)
loss_objectness, loss_rpn_box_reg = self.loss_evaluator(
anchors, objectness, regress_new, targets
)
losses = {
prefix + "loss_objectness": loss_objectness,
prefix + "loss_rpn_box_reg": loss_rpn_box_reg,
}
return boxes, losses
def _forward_test(self, anchors, objectness, rpn_box_regression):
boxes = self.box_selector_test(anchors, objectness, rpn_box_regression)
if self.cfg.MODEL.RPN_ONLY:
# For end-to-end models, the RPN proposals are an intermediate state
# and don't bother to sort them in decreasing score order. For RPN-only
# models, the proposals are the final output and we return them in
# high-to-low confidence order.
inds = [
box.get_field("objectness").sort(descending=True)[1] for box in boxes
]
boxes = [box[ind] for box, ind in zip(boxes, inds)]
return boxes, {}
def build_rpn(cfg, in_channels):
"""
This gives the gist of it. Not super important because it doesn't change as much
"""
if cfg.MODEL.FCOS_ON:
return build_fcos(cfg, in_channels)
if cfg.MODEL.RETINANET_ON:
return build_retinanet(cfg, in_channels)
return RPNModule(cfg, in_channels)
def regress_to_box(anchor_define,regress_pre):
boxes_total = []
num_f = 0
for a, b in zip(anchor_define, regress_pre):
boxes_total.append(forward_feature_map(a, b))
num_f += 1
return boxes_total
def forward_feature_map(anchors_define, boxes_regression):
N, A, H, W = boxes_regression.shape
boxes_regression = faltten(boxes_regression, N, A, 18, H, W) #
# image_shapes = [box.size for box in anchors_define]
concat_anchors = torch.cat([a.bbox for a in anchors_define], dim=0)
concat_anchors = concat_anchors.reshape(N, -1, 4)
proposals = decode_iou(boxes_regression.view(-1, 18), concat_anchors.view(-1, 4))
box_temp_post = proposals.view(N, -1, 4)
return box_temp_post
def faltten(layer, N, A, C, H, W):
layer = layer.view(N, -1, C, H, W)
layer = layer.permute(0, 3, 4, 1, 2) #N H W A C
layer = layer.reshape(N, -1, C) # N H*W*A C
return layer
def decode_iou( rel_codes, boxes, num_p = 8):
"""
From a set of original boxes and encoded relative box offsets,
get the decoded boxes.
Arguments:
rel_codes (Tensor): encoded boxes # predict [2, 12000, 4]
boxes (Tensor): reference boxes. # anchor [2, 12000, 4] xmin0 ymin1 xmax2 ymax3
"""
boxes = boxes.to(rel_codes.dtype)
TO_REMOVE = 1 # TODO remove
widths = boxes[:, 2] - boxes[:, 0] + TO_REMOVE
heights = boxes[:, 3] - boxes[:, 1] + TO_REMOVE
dx = rel_codes[:, 16]
dy = rel_codes[:, 17]
ctr_x = boxes[:, 0] + 0.5 * widths
ctr_y = boxes[:, 1] + 0.5 * heights
ctr_x_new = dx * widths * 0.5 + ctr_x
ctr_y_new = dy * heights * 0.5 + ctr_y
# 123
# 8#4
# 765
if num_p == 8: # 8 boundary points
x_1 = boxes[:, 0] + widths * rel_codes[:, 0]
y_1 = boxes[:, 1] + heights * rel_codes[:, 1]
x_2 = ctr_x + widths * rel_codes[:, 2]
y_2 = boxes[:, 1] + heights * rel_codes[:, 3]
x_3 = boxes[:, 2] + widths * rel_codes[:, 4]
y_3 = boxes[:, 1] + heights * rel_codes[:, 5]
x_4 = boxes[:, 2] + widths * rel_codes[:, 6]
y_4 = ctr_y + heights * rel_codes[:, 7]
x_5 = boxes[:, 2] + widths * rel_codes[:, 8]
y_5 = boxes[:, 3] + heights * rel_codes[:, 9]
x_6 = ctr_x + widths * rel_codes[:, 10]
y_6 = boxes[:, 3] + heights * rel_codes[:, 11]
x_7 = boxes[:, 0] + widths * rel_codes[:, 12]
y_7 = boxes[:, 3] + heights * rel_codes[:, 13]
x_8 = boxes[:, 0] + widths * rel_codes[:, 14]
y_8 = ctr_y + heights * rel_codes[:, 15]
x_total = torch.stack([x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8], 0) # [8, N]
y_total = torch.stack([y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8], 0)
x_min = torch.min(x_total, 0, keepdim=True) # [1, N]
x_max = torch.max(x_total, 0, keepdim=True) # [1, N]
y_min = torch.min(y_total, 0, keepdim=True) # [1, N]
y_max = torch.max(y_total, 0, keepdim=True) # [1, N]
N1, N2 = x_min[0].shape
x_min = x_min[0].view([N2])
x_max = x_max[0].view([N2])
y_min = y_min[0].view([N2])
y_max = y_max[0].view([N2])
x_min = torch.stack([x_min, ctr_x_new], 0)
x_max = torch.stack([x_max, ctr_x_new], 0)
y_min = torch.stack([y_min, ctr_y_new], 0)
y_max = torch.stack([y_max, ctr_y_new], 0)
x_min = torch.min(x_min, 0, keepdim=True) # [1, N]
x_max = torch.max(x_max, 0, keepdim=True) # [1, N]
y_min = torch.min(y_min, 0, keepdim=True) # [1, N]
y_max = torch.max(y_max, 0, keepdim=True) # [1, N]
pred_boxes = torch.zeros_like(boxes)
pred_boxes[:, 0] = x_min[0][0, :]
pred_boxes[:, 1] = y_min[0][0, :]
pred_boxes[:, 2] = x_max[0][0, :]
pred_boxes[:, 3] = y_max[0][0, :]
return pred_boxes |