File size: 12,067 Bytes
6250360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
import torch.nn.functional as F
from torch import nn
import math
from maskrcnn_benchmark.modeling import registry
from maskrcnn_benchmark.modeling.box_coder import BoxCoder
from maskrcnn_benchmark.modeling.rpn.retinanet.retinanet import build_retinanet
from maskrcnn_benchmark.modeling.rpn.fcos.fcos import build_fcos
from .loss import make_rpn_loss_evaluator
from .anchor_generator import make_anchor_generator
from .inference import make_rpn_postprocessor


class RPNHeadConvRegressor(nn.Module):
    """
    A simple RPN Head for classification and bbox regression
    """

    def __init__(self, cfg, in_channels, num_anchors):
        """
        Arguments:
            cfg              : config
            in_channels (int): number of channels of the input feature
            num_anchors (int): number of anchors to be predicted
        """
        super(RPNHeadConvRegressor, self).__init__()
        self.cls_logits = nn.Conv2d(in_channels, num_anchors, kernel_size=1, stride=1)
        self.bbox_pred = nn.Conv2d(
            in_channels, num_anchors * 4, kernel_size=1, stride=1
        )

        for l in [self.cls_logits, self.bbox_pred]:
            torch.nn.init.normal_(l.weight, std=0.01)
            torch.nn.init.constant_(l.bias, 0)

    def forward(self, x):
        assert isinstance(x, (list, tuple))
        logits = [self.cls_logits(y) for y in x]
        bbox_reg = [self.bbox_pred(y) for y in x]

        return logits, bbox_reg


class RPNHeadFeatureSingleConv(nn.Module):
    """
    Adds a simple RPN Head with one conv to extract the feature
    """

    def __init__(self, cfg, in_channels):
        """
        Arguments:
            cfg              : config
            in_channels (int): number of channels of the input feature
        """
        super(RPNHeadFeatureSingleConv, self).__init__()
        self.conv = nn.Conv2d(
            in_channels, in_channels, kernel_size=3, stride=1, padding=1
        )

        for l in [self.conv]:
            torch.nn.init.normal_(l.weight, std=0.01)
            torch.nn.init.constant_(l.bias, 0)

        self.out_channels = in_channels

    def forward(self, x):
        assert isinstance(x, (list, tuple))
        x = [F.relu(self.conv(z)) for z in x]

        return x


@registry.RPN_HEADS.register("SingleConvRPNHead_1")
class RPNHead(nn.Module):
    """
    Adds a simple RPN Head with classification and regression heads
    """

    def __init__(self, cfg, in_channels, num_anchors):
        """
        Arguments:
            cfg              : config
            in_channels (int): number of channels of the input feature
            num_anchors (int): number of anchors to be predicted
        """
        super(RPNHead, self).__init__()
        self.conv = nn.Conv2d(
            in_channels, in_channels, kernel_size=3, stride=1, padding=1
        )
        self.cls_logits = nn.Conv2d(in_channels, num_anchors, kernel_size=1, stride=1)
        self.bbox_pred_new = nn.Conv2d(
            in_channels, num_anchors * 18, kernel_size=1, stride=1
        )

        for l in [self.conv, self.cls_logits, self.bbox_pred_new]:
            torch.nn.init.normal_(l.weight, std=0.01)
            torch.nn.init.constant_(l.bias, 0)

    def forward(self, x):

        logits = []
        bbox_reg = []
        for feature in x:
            t = F.relu(self.conv(feature))
            logits.append(self.cls_logits(t))
            bbox_reg.append(self.bbox_pred_new(t))
        return logits, bbox_reg


class RPNModule(torch.nn.Module):
    """
    Module for RPN computation. Takes feature maps from the backbone and RPN
    proposals and losses. Works for both FPN and non-FPN.
    """

    def __init__(self, cfg, in_channels):
        super(RPNModule, self).__init__()

        self.cfg = cfg.clone()

        anchor_generator = make_anchor_generator(cfg)

        rpn_head = registry.RPN_HEADS[cfg.MODEL.RPN.RPN_HEAD]
        head = rpn_head(
            cfg, in_channels, anchor_generator.num_anchors_per_location()[0]
        )

        rpn_box_coder = BoxCoder(weights=(1.0, 1.0, 1.0, 1.0))

        box_selector_train = make_rpn_postprocessor(cfg, rpn_box_coder, is_train=True)
        box_selector_test = make_rpn_postprocessor(cfg, rpn_box_coder, is_train=False)

        loss_evaluator = make_rpn_loss_evaluator(cfg, rpn_box_coder)

        self.anchor_generator = anchor_generator
        self.head = head
        self.box_selector_train = box_selector_train
        self.box_selector_test = box_selector_test
        self.loss_evaluator = loss_evaluator

    def forward(self, images, features, targets=None, prefix=''):
        """
        Arguments:
            images (ImageList): images for which we want to compute the predictions
            features (list[Tensor]): features computed from the images that are
                used for computing the predictions. Each tensor in the list
                correspond to different feature levels
            targets (list[BoxList): ground-truth boxes present in the image (optional)

        Returns:
            boxes (list[BoxList]): the predicted boxes from the RPN, one BoxList per
                image.
            losses (dict[Tensor]): the losses for the model during training. During
                testing, it is an empty dict.
        """
        objectness, rpn_box_regression = self.head(features)   # len = 5
        anchors = self.anchor_generator(images, features)

        if self.training:
            return self._forward_train(anchors, objectness,
                                       rpn_box_regression, targets, prefix)
        else:
            return self._forward_test(anchors, objectness, rpn_box_regression)

    def _forward_train(self, anchors, objectness, rpn_box_regression,  # [image,number,[n,4]]
                       targets, prefix):
        if self.cfg.MODEL.RPN_ONLY:
            # When training an RPN-only model, the loss is determined by the
            # predicted objectness and rpn_box_regression values and there is
            # no need to transform the anchors into predicted boxes; this is an
            # optimization that avoids the unnecessary transformation.
            boxes = anchors
        else:
            # print('\n---end-to-end model---\n')
            # For end-to-end models, anchors must be transformed into boxes and
            # sampled into a training batch.
            with torch.no_grad():
                boxes = self.box_selector_train(
                    anchors, objectness, rpn_box_regression, targets
                )
        anchors_new = list(zip(*anchors))
        regress_new = regress_to_box(anchors_new, rpn_box_regression)

        loss_objectness, loss_rpn_box_reg = self.loss_evaluator(
            anchors, objectness, regress_new, targets
        )
        losses = {
            prefix + "loss_objectness": loss_objectness,
            prefix + "loss_rpn_box_reg": loss_rpn_box_reg,
        }
        return boxes, losses

    def _forward_test(self, anchors, objectness, rpn_box_regression):
        boxes = self.box_selector_test(anchors, objectness, rpn_box_regression)
        if self.cfg.MODEL.RPN_ONLY:
            # For end-to-end models, the RPN proposals are an intermediate state
            # and don't bother to sort them in decreasing score order. For RPN-only
            # models, the proposals are the final output and we return them in
            # high-to-low confidence order.
            inds = [
                box.get_field("objectness").sort(descending=True)[1] for box in boxes
            ]
            boxes = [box[ind] for box, ind in zip(boxes, inds)]
        return boxes, {}


def build_rpn(cfg, in_channels):
    """
    This gives the gist of it. Not super important because it doesn't change as much
    """
    if cfg.MODEL.FCOS_ON:
        return build_fcos(cfg, in_channels)
    if cfg.MODEL.RETINANET_ON:
        return build_retinanet(cfg, in_channels)

    return RPNModule(cfg, in_channels)


def regress_to_box(anchor_define,regress_pre):

    boxes_total = []
    num_f = 0
    for a, b in zip(anchor_define, regress_pre):
        boxes_total.append(forward_feature_map(a, b))
        num_f += 1
    return boxes_total

def forward_feature_map(anchors_define, boxes_regression):
    N, A, H, W = boxes_regression.shape

    boxes_regression = faltten(boxes_regression, N, A, 18, H, W)  #

    # image_shapes = [box.size for box in anchors_define]
    concat_anchors = torch.cat([a.bbox for a in anchors_define], dim=0)
    concat_anchors = concat_anchors.reshape(N, -1, 4)
    proposals = decode_iou(boxes_regression.view(-1, 18), concat_anchors.view(-1, 4))
    box_temp_post = proposals.view(N, -1, 4)

    return box_temp_post

def faltten(layer, N, A, C, H, W):
    layer = layer.view(N, -1, C, H, W)
    layer = layer.permute(0, 3, 4, 1, 2)  #N H W A C
    layer = layer.reshape(N, -1, C)  # N H*W*A C
    return layer

def decode_iou( rel_codes, boxes, num_p = 8):
        """
        From a set of original boxes and encoded relative box offsets,
        get the decoded boxes.

        Arguments:
            rel_codes (Tensor): encoded boxes   # predict  [2, 12000, 4]
            boxes (Tensor): reference boxes.   # anchor  [2, 12000, 4]  xmin0 ymin1 xmax2 ymax3
        """
        boxes = boxes.to(rel_codes.dtype)

        TO_REMOVE = 1  # TODO remove
        widths = boxes[:, 2] - boxes[:, 0] + TO_REMOVE
        heights = boxes[:, 3] - boxes[:, 1] + TO_REMOVE
        dx = rel_codes[:, 16]
        dy = rel_codes[:, 17]

        ctr_x = boxes[:, 0] + 0.5 * widths
        ctr_y = boxes[:, 1] + 0.5 * heights

        ctr_x_new = dx * widths * 0.5 + ctr_x
        ctr_y_new = dy * heights * 0.5 + ctr_y
        # 123
        # 8#4
        # 765
        if num_p == 8:  # 8 boundary points
            x_1 = boxes[:, 0] + widths * rel_codes[:, 0]
            y_1 = boxes[:, 1] + heights * rel_codes[:, 1]
            x_2 = ctr_x + widths * rel_codes[:, 2]
            y_2 = boxes[:, 1] + heights * rel_codes[:, 3]
            x_3 = boxes[:, 2] + widths * rel_codes[:, 4]
            y_3 = boxes[:, 1] + heights * rel_codes[:, 5]
            x_4 = boxes[:, 2] + widths * rel_codes[:, 6]
            y_4 = ctr_y + heights * rel_codes[:, 7]
            x_5 = boxes[:, 2] + widths * rel_codes[:, 8]
            y_5 = boxes[:, 3] + heights * rel_codes[:, 9]
            x_6 = ctr_x + widths * rel_codes[:, 10]
            y_6 = boxes[:, 3] + heights * rel_codes[:, 11]
            x_7 = boxes[:, 0] + widths * rel_codes[:, 12]
            y_7 = boxes[:, 3] + heights * rel_codes[:, 13]
            x_8 = boxes[:, 0] + widths * rel_codes[:, 14]
            y_8 = ctr_y + heights * rel_codes[:, 15]
            x_total = torch.stack([x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8], 0)  # [8, N]
            y_total = torch.stack([y_1, y_2, y_3, y_4, y_5, y_6, y_7, y_8], 0)

        x_min = torch.min(x_total, 0, keepdim=True)  # [1, N]
        x_max = torch.max(x_total, 0, keepdim=True)  # [1, N]
        y_min = torch.min(y_total, 0, keepdim=True)  # [1, N]
        y_max = torch.max(y_total, 0, keepdim=True)  # [1, N]

        N1, N2 = x_min[0].shape
        x_min = x_min[0].view([N2])
        x_max = x_max[0].view([N2])
        y_min = y_min[0].view([N2])
        y_max = y_max[0].view([N2])

        x_min = torch.stack([x_min, ctr_x_new], 0)
        x_max = torch.stack([x_max, ctr_x_new], 0)
        y_min = torch.stack([y_min, ctr_y_new], 0)
        y_max = torch.stack([y_max, ctr_y_new], 0)

        x_min = torch.min(x_min, 0, keepdim=True)  # [1, N]
        x_max = torch.max(x_max, 0, keepdim=True)  # [1, N]
        y_min = torch.min(y_min, 0, keepdim=True)  # [1, N]
        y_max = torch.max(y_max, 0, keepdim=True)  # [1, N]

        pred_boxes = torch.zeros_like(boxes)

        pred_boxes[:, 0] = x_min[0][0, :]
        pred_boxes[:, 1] = y_min[0][0, :]
        pred_boxes[:, 2] = x_max[0][0, :]
        pred_boxes[:, 3] = y_max[0][0, :]

        return pred_boxes