File size: 5,077 Bytes
6250360
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import torch


# transpose
FLIP_LEFT_RIGHT = 0
FLIP_TOP_BOTTOM = 1

class KES(object):
    def __init__(self, kes, size, mode=None):
        # FIXME remove check once we have better integration with device
        # in my version this would consistently return a CPU tensor
        device = kes.device if isinstance(kes, torch.Tensor) else torch.device('cpu')
        kes = torch.as_tensor(kes, dtype=torch.float32, device=device)
        if len(kes.size()) == 2:
            kes = kes.unsqueeze(2)
            if not kes.size()[0] ==0:
                assert(kes.size()[-2] == 12), str(kes.size()) # 12kes

        num_kes = kes.shape[0]
        kes_x = kes[:, :6, 0] # 4+2=6
        kes_y = kes[:, 6:, 0]
        # TODO remove once support or zero in dim is in
        if not kes.size()[0] ==0:
            assert(kes_x.size() == kes_y.size()), str(kes_x.size())+' '+str(kes_y.size())

        if num_kes > 0:
            kes = kes.view(num_kes, -1, 1)
            kes_x = kes_x.view(num_kes, -1, 1)
            kes_y = kes_y.view(num_kes, -1, 1)

        # TODO should I split them?
        self.kes = kes
        self.kes_x = kes_x
        self.kes_y = kes_y

        self.size = size
        self.mode = mode

    def crop(self, box):
        w, h = box[2] - box[0], box[3] - box[1]
        k = self.kes.clone()
        k[:, :6, 0] -= box[0]
        k[:, 6:, 0] -= box[1]
        return type(self)(k, (w, h), self.mode)

    def resize(self, size, *args, **kwargs):
        ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(size, self.size))
        ratio_w, ratio_h = ratios
        resized_data_x = self.kes_x.clone()
        resized_data_x[..., :] *= ratio_w

        resized_data_y = self.kes_y.clone()
        resized_data_y[..., :] *= ratio_h

        resized_data = torch.cat((resized_data_x, resized_data_y), dim=-2)
        return type(self)(resized_data, size, self.mode)

    def transpose(self, method):
        if method not in (FLIP_LEFT_RIGHT,):
            raise NotImplementedError(
                    "Only FLIP_LEFT_RIGHT implemented")

        flip_inds = type(self).FLIP_INDS
        flipped_data_x = self.kes_x[:, flip_inds]
        width = self.size[0]
        TO_REMOVE = 1
        # Flip x coordinates
        flipped_data_x[..., :] = width - flipped_data_x[..., :] - TO_REMOVE

        flipped_data_y = self.kes_y.clone()
        flipped_data = torch.cat((flipped_data_x, flipped_data_y), dim=-2)
        return type(self)(flipped_data, self.size, self.mode)

    def to(self, *args, **kwargs):
        return type(self)(self.kes.to(*args, **kwargs), self.size, self.mode)

    def __getitem__(self, item):
        return type(self)(self.kes[item], self.size, self.mode)

    def __repr__(self):
        s = self.__class__.__name__ + '('
        s += 'num_instances_x={}, '.format(len(self.kes_x))
        s += 'num_instances_y={}, '.format(len(self.kes_y))
        s += 'image_width={}, '.format(self.size[0])
        s += 'image_height={})'.format(self.size[1])
        return s


def _create_flip_indices(names, flip_map):
    full_flip_map = flip_map.copy()
    full_flip_map.update({v: k for k, v in flip_map.items()})
    flipped_names = [i if i not in full_flip_map else full_flip_map[i] for i in names]
    flip_indices = [names.index(i) for i in flipped_names]
    return torch.tensor(flip_indices)


class textKES(KES):
    NAMES = [ # x and y
        'meanx', 
        'xmin',
        'x2',
        'x3',
        'xmax',
        'cx'
        # 'meany',
        # 'ymin',
        # 'y2',
        # 'y3',
        # 'ymax',
        # 'cy'
    ]
    FLIP_MAP = {
        'xmin': 'xmax',
        'x2': 'x3',
    }


# TODO this doesn't look great
textKES.FLIP_INDS = _create_flip_indices(textKES.NAMES, textKES.FLIP_MAP)


# TODO make this nicer, this is a direct translation from C2 (but removing the inner loop)
def kes_to_heat_map(kes_x, kes_y, mty, rois, heatmap_size):
    if rois.numel() == 0:
        return rois.new().long(), rois.new().long()
    offset_x = rois[:, 0]
    offset_y = rois[:, 1]
    scale_x = heatmap_size / (rois[:, 2] - rois[:, 0])
    scale_y = heatmap_size / (rois[:, 3] - rois[:, 1])

    offset_x = offset_x[:, None]
    offset_y = offset_y[:, None]
    scale_x = scale_x[:, None]
    scale_y = scale_y[:, None]

    x = kes_x[..., 0]
    y = kes_y[..., 0]

    x_boundary_inds = x == rois[:, 2][:, None]
    y_boundary_inds = y == rois[:, 3][:, None]

    x = (x - offset_x) * scale_x
    x = x.floor().long()
    y = (y - offset_y) * scale_y
    y = y.floor().long()

    x[x_boundary_inds] = heatmap_size - 1
    y[y_boundary_inds] = heatmap_size - 1

    valid_loc_x = (x >= 0) & (x < heatmap_size)
    valid_x = (valid_loc_x).long()

    valid_loc_y = (y >= 0) & (y < heatmap_size)
    valid_y = (valid_loc_y).long()

    valid_mty = ((x >= 0) & (x < heatmap_size)) & ((y >= 0) & (y < heatmap_size))
    valid_mty = valid_mty.sum(dim=1)>0
    valid_mty = (valid_mty).long()

    heatmap_x = x
    heatmap_y = y

    mty = mty
    return heatmap_x, heatmap_y, valid_x, valid_y, mty, valid_mty