Spaces:
Build error
Build error
First model version
Browse files
maskrcnn_benchmark/csrc/cpu/dcn_v2_psroi_pooling_cpu.cpp
DELETED
@@ -1,426 +0,0 @@
|
|
1 |
-
/*!
|
2 |
-
* Copyright (c) 2017 Microsoft
|
3 |
-
* Licensed under The MIT License [see LICENSE for details]
|
4 |
-
* \file deformable_psroi_pooling.cu
|
5 |
-
* \brief
|
6 |
-
* \author Yi Li, Guodong Zhang, Jifeng Dai
|
7 |
-
*/
|
8 |
-
/***************** Adapted by Charles Shang *********************/
|
9 |
-
// modified from the CUDA version for CPU use by Daniel K. Suhendro
|
10 |
-
|
11 |
-
#include <cstdio>
|
12 |
-
#include <algorithm>
|
13 |
-
#include <cstring>
|
14 |
-
|
15 |
-
#include <ATen/ATen.h>
|
16 |
-
//#include <ATen/cuda/CUDAContext.h>
|
17 |
-
|
18 |
-
#include <TH/TH.h>
|
19 |
-
//#include <THC/THCAtomics.cuh>
|
20 |
-
//#include <THC/THCDeviceUtils.cuh>
|
21 |
-
|
22 |
-
/*#define CUDA_KERNEL_LOOP(i, n) \
|
23 |
-
for (int i = blockIdx.x * blockDim.x + threadIdx.x; \
|
24 |
-
i < (n); \
|
25 |
-
i += blockDim.x * gridDim.x)
|
26 |
-
|
27 |
-
const int CUDA_NUM_THREADS = 1024;
|
28 |
-
inline int GET_BLOCKS(const int N)
|
29 |
-
{
|
30 |
-
return (N + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS;
|
31 |
-
}*/
|
32 |
-
|
33 |
-
template <typename T>
|
34 |
-
T bilinear_interp_cpu(
|
35 |
-
const T *data,
|
36 |
-
const T x,
|
37 |
-
const T y,
|
38 |
-
const int width,
|
39 |
-
const int height)
|
40 |
-
{
|
41 |
-
int x1 = floor(x);
|
42 |
-
int x2 = ceil(x);
|
43 |
-
int y1 = floor(y);
|
44 |
-
int y2 = ceil(y);
|
45 |
-
T dist_x = static_cast<T>(x - x1);
|
46 |
-
T dist_y = static_cast<T>(y - y1);
|
47 |
-
T value11 = data[y1 * width + x1];
|
48 |
-
T value12 = data[y2 * width + x1];
|
49 |
-
T value21 = data[y1 * width + x2];
|
50 |
-
T value22 = data[y2 * width + x2];
|
51 |
-
T value = (1 - dist_x) * (1 - dist_y) * value11 +
|
52 |
-
(1 - dist_x) * dist_y * value12 +
|
53 |
-
dist_x * (1 - dist_y) * value21 +
|
54 |
-
dist_x * dist_y * value22;
|
55 |
-
return value;
|
56 |
-
}
|
57 |
-
|
58 |
-
template <typename T>
|
59 |
-
void DeformablePSROIPoolForwardKernelCpu(
|
60 |
-
const int count,
|
61 |
-
const T *bottom_data,
|
62 |
-
const T spatial_scale,
|
63 |
-
const int channels,
|
64 |
-
const int height, const int width,
|
65 |
-
const int pooled_height, const int pooled_width,
|
66 |
-
const T *bottom_rois, const T *bottom_trans,
|
67 |
-
const int no_trans,
|
68 |
-
const T trans_std,
|
69 |
-
const int sample_per_part,
|
70 |
-
const int output_dim,
|
71 |
-
const int group_size,
|
72 |
-
const int part_size,
|
73 |
-
const int num_classes,
|
74 |
-
const int channels_each_class,
|
75 |
-
T *top_data,
|
76 |
-
T *top_count)
|
77 |
-
{
|
78 |
-
for(int index = 0; index < count; index++)
|
79 |
-
{
|
80 |
-
// The output is in order (n, ctop, ph, pw)
|
81 |
-
int pw = index % pooled_width;
|
82 |
-
int ph = (index / pooled_width) % pooled_height;
|
83 |
-
int ctop = (index / pooled_width / pooled_height) % output_dim;
|
84 |
-
int n = index / pooled_width / pooled_height / output_dim;
|
85 |
-
|
86 |
-
// [start, end) interval for spatial sampling
|
87 |
-
const T *offset_bottom_rois = bottom_rois + n * 5;
|
88 |
-
int roi_batch_ind = offset_bottom_rois[0];
|
89 |
-
T roi_start_w = static_cast<T>(round(offset_bottom_rois[1])) * spatial_scale - 0.5;
|
90 |
-
T roi_start_h = static_cast<T>(round(offset_bottom_rois[2])) * spatial_scale - 0.5;
|
91 |
-
T roi_end_w = static_cast<T>(round(offset_bottom_rois[3]) + 1.) * spatial_scale - 0.5;
|
92 |
-
T roi_end_h = static_cast<T>(round(offset_bottom_rois[4]) + 1.) * spatial_scale - 0.5;
|
93 |
-
|
94 |
-
// Force too small ROIs to be 1x1
|
95 |
-
T roi_width = std::max(roi_end_w - roi_start_w, T(0.1)); //avoid 0
|
96 |
-
T roi_height = std::max(roi_end_h - roi_start_h, T(0.1));
|
97 |
-
|
98 |
-
// Compute w and h at bottom
|
99 |
-
T bin_size_h = roi_height / static_cast<T>(pooled_height);
|
100 |
-
T bin_size_w = roi_width / static_cast<T>(pooled_width);
|
101 |
-
|
102 |
-
T sub_bin_size_h = bin_size_h / static_cast<T>(sample_per_part);
|
103 |
-
T sub_bin_size_w = bin_size_w / static_cast<T>(sample_per_part);
|
104 |
-
|
105 |
-
int part_h = floor(static_cast<T>(ph) / pooled_height * part_size);
|
106 |
-
int part_w = floor(static_cast<T>(pw) / pooled_width * part_size);
|
107 |
-
int class_id = ctop / channels_each_class;
|
108 |
-
T trans_x = no_trans ? static_cast<T>(0) : bottom_trans[(((n * num_classes + class_id) * 2) * part_size + part_h) * part_size + part_w] * trans_std;
|
109 |
-
T trans_y = no_trans ? static_cast<T>(0) : bottom_trans[(((n * num_classes + class_id) * 2 + 1) * part_size + part_h) * part_size + part_w] * trans_std;
|
110 |
-
|
111 |
-
T wstart = static_cast<T>(pw) * bin_size_w + roi_start_w;
|
112 |
-
wstart += trans_x * roi_width;
|
113 |
-
T hstart = static_cast<T>(ph) * bin_size_h + roi_start_h;
|
114 |
-
hstart += trans_y * roi_height;
|
115 |
-
|
116 |
-
T sum = 0;
|
117 |
-
int count = 0;
|
118 |
-
int gw = floor(static_cast<T>(pw) * group_size / pooled_width);
|
119 |
-
int gh = floor(static_cast<T>(ph) * group_size / pooled_height);
|
120 |
-
gw = std::min(std::max(gw, 0), group_size - 1);
|
121 |
-
gh = std::min(std::max(gh, 0), group_size - 1);
|
122 |
-
|
123 |
-
const T *offset_bottom_data = bottom_data + (roi_batch_ind * channels) * height * width;
|
124 |
-
for (int ih = 0; ih < sample_per_part; ih++)
|
125 |
-
{
|
126 |
-
for (int iw = 0; iw < sample_per_part; iw++)
|
127 |
-
{
|
128 |
-
T w = wstart + iw * sub_bin_size_w;
|
129 |
-
T h = hstart + ih * sub_bin_size_h;
|
130 |
-
// bilinear interpolation
|
131 |
-
if (w < -0.5 || w > width - 0.5 || h < -0.5 || h > height - 0.5)
|
132 |
-
{
|
133 |
-
continue;
|
134 |
-
}
|
135 |
-
w = std::min(std::max(w, T(0.)), width - T(1.));
|
136 |
-
h = std::min(std::max(h, T(0.)), height - T(1.));
|
137 |
-
int c = (ctop * group_size + gh) * group_size + gw;
|
138 |
-
T val = bilinear_interp_cpu(offset_bottom_data + c * height * width, w, h, width, height);
|
139 |
-
sum += val;
|
140 |
-
count++;
|
141 |
-
}
|
142 |
-
}
|
143 |
-
top_data[index] = count == 0 ? static_cast<T>(0) : sum / count;
|
144 |
-
top_count[index] = count;
|
145 |
-
}
|
146 |
-
}
|
147 |
-
|
148 |
-
template <typename T>
|
149 |
-
void DeformablePSROIPoolBackwardAccKernelCpu(
|
150 |
-
const int count,
|
151 |
-
const T *top_diff,
|
152 |
-
const T *top_count,
|
153 |
-
const int num_rois,
|
154 |
-
const T spatial_scale,
|
155 |
-
const int channels,
|
156 |
-
const int height, const int width,
|
157 |
-
const int pooled_height, const int pooled_width,
|
158 |
-
const int output_dim,
|
159 |
-
T *bottom_data_diff, T *bottom_trans_diff,
|
160 |
-
const T *bottom_data,
|
161 |
-
const T *bottom_rois,
|
162 |
-
const T *bottom_trans,
|
163 |
-
const int no_trans,
|
164 |
-
const T trans_std,
|
165 |
-
const int sample_per_part,
|
166 |
-
const int group_size,
|
167 |
-
const int part_size,
|
168 |
-
const int num_classes,
|
169 |
-
const int channels_each_class)
|
170 |
-
{
|
171 |
-
for(int index = 0; index < count; index++)
|
172 |
-
{
|
173 |
-
// The output is in order (n, ctop, ph, pw)
|
174 |
-
int pw = index % pooled_width;
|
175 |
-
int ph = (index / pooled_width) % pooled_height;
|
176 |
-
int ctop = (index / pooled_width / pooled_height) % output_dim;
|
177 |
-
int n = index / pooled_width / pooled_height / output_dim;
|
178 |
-
|
179 |
-
// [start, end) interval for spatial sampling
|
180 |
-
const T *offset_bottom_rois = bottom_rois + n * 5;
|
181 |
-
int roi_batch_ind = offset_bottom_rois[0];
|
182 |
-
T roi_start_w = static_cast<T>(round(offset_bottom_rois[1])) * spatial_scale - 0.5;
|
183 |
-
T roi_start_h = static_cast<T>(round(offset_bottom_rois[2])) * spatial_scale - 0.5;
|
184 |
-
T roi_end_w = static_cast<T>(round(offset_bottom_rois[3]) + 1.) * spatial_scale - 0.5;
|
185 |
-
T roi_end_h = static_cast<T>(round(offset_bottom_rois[4]) + 1.) * spatial_scale - 0.5;
|
186 |
-
|
187 |
-
// Force too small ROIs to be 1x1
|
188 |
-
T roi_width = std::max(roi_end_w - roi_start_w, T(0.1)); //avoid 0
|
189 |
-
T roi_height = std::max(roi_end_h - roi_start_h, T(0.1));
|
190 |
-
|
191 |
-
// Compute w and h at bottom
|
192 |
-
T bin_size_h = roi_height / static_cast<T>(pooled_height);
|
193 |
-
T bin_size_w = roi_width / static_cast<T>(pooled_width);
|
194 |
-
|
195 |
-
T sub_bin_size_h = bin_size_h / static_cast<T>(sample_per_part);
|
196 |
-
T sub_bin_size_w = bin_size_w / static_cast<T>(sample_per_part);
|
197 |
-
|
198 |
-
int part_h = floor(static_cast<T>(ph) / pooled_height * part_size);
|
199 |
-
int part_w = floor(static_cast<T>(pw) / pooled_width * part_size);
|
200 |
-
int class_id = ctop / channels_each_class;
|
201 |
-
T trans_x = no_trans ? static_cast<T>(0) : bottom_trans[(((n * num_classes + class_id) * 2) * part_size + part_h) * part_size + part_w] * trans_std;
|
202 |
-
T trans_y = no_trans ? static_cast<T>(0) : bottom_trans[(((n * num_classes + class_id) * 2 + 1) * part_size + part_h) * part_size + part_w] * trans_std;
|
203 |
-
|
204 |
-
T wstart = static_cast<T>(pw) * bin_size_w + roi_start_w;
|
205 |
-
wstart += trans_x * roi_width;
|
206 |
-
T hstart = static_cast<T>(ph) * bin_size_h + roi_start_h;
|
207 |
-
hstart += trans_y * roi_height;
|
208 |
-
|
209 |
-
if (top_count[index] <= 0)
|
210 |
-
{
|
211 |
-
continue;
|
212 |
-
}
|
213 |
-
T diff_val = top_diff[index] / top_count[index];
|
214 |
-
const T *offset_bottom_data = bottom_data + roi_batch_ind * channels * height * width;
|
215 |
-
T *offset_bottom_data_diff = bottom_data_diff + roi_batch_ind * channels * height * width;
|
216 |
-
int gw = floor(static_cast<T>(pw) * group_size / pooled_width);
|
217 |
-
int gh = floor(static_cast<T>(ph) * group_size / pooled_height);
|
218 |
-
gw = std::min(std::max(gw, 0), group_size - 1);
|
219 |
-
gh = std::min(std::max(gh, 0), group_size - 1);
|
220 |
-
|
221 |
-
for (int ih = 0; ih < sample_per_part; ih++)
|
222 |
-
{
|
223 |
-
for (int iw = 0; iw < sample_per_part; iw++)
|
224 |
-
{
|
225 |
-
T w = wstart + iw * sub_bin_size_w;
|
226 |
-
T h = hstart + ih * sub_bin_size_h;
|
227 |
-
// bilinear interpolation
|
228 |
-
if (w < -0.5 || w > width - 0.5 || h < -0.5 || h > height - 0.5)
|
229 |
-
{
|
230 |
-
continue;
|
231 |
-
}
|
232 |
-
w = std::min(std::max(w, T(0.)), width - T(1.));
|
233 |
-
h = std::min(std::max(h, T(0.)), height - T(1.));
|
234 |
-
int c = (ctop * group_size + gh) * group_size + gw;
|
235 |
-
// backward on feature
|
236 |
-
int x0 = floor(w);
|
237 |
-
int x1 = ceil(w);
|
238 |
-
int y0 = floor(h);
|
239 |
-
int y1 = ceil(h);
|
240 |
-
T dist_x = w - x0, dist_y = h - y0;
|
241 |
-
T q00 = (1 - dist_x) * (1 - dist_y);
|
242 |
-
T q01 = (1 - dist_x) * dist_y;
|
243 |
-
T q10 = dist_x * (1 - dist_y);
|
244 |
-
T q11 = dist_x * dist_y;
|
245 |
-
int bottom_index_base = c * height * width;
|
246 |
-
/*atomicAdd(offset_bottom_data_diff + bottom_index_base + y0 * width + x0, q00 * diff_val);
|
247 |
-
atomicAdd(offset_bottom_data_diff + bottom_index_base + y1 * width + x0, q01 * diff_val);
|
248 |
-
atomicAdd(offset_bottom_data_diff + bottom_index_base + y0 * width + x1, q10 * diff_val);
|
249 |
-
atomicAdd(offset_bottom_data_diff + bottom_index_base + y1 * width + x1, q11 * diff_val);*/
|
250 |
-
*(offset_bottom_data_diff + bottom_index_base + y0 * width + x0) += q00 * diff_val;
|
251 |
-
*(offset_bottom_data_diff + bottom_index_base + y1 * width + x0) += q01 * diff_val;
|
252 |
-
*(offset_bottom_data_diff + bottom_index_base + y0 * width + x1) += q10 * diff_val;
|
253 |
-
*(offset_bottom_data_diff + bottom_index_base + y1 * width + x1) += q11 * diff_val;
|
254 |
-
|
255 |
-
|
256 |
-
if (no_trans)
|
257 |
-
{
|
258 |
-
continue;
|
259 |
-
}
|
260 |
-
T U00 = offset_bottom_data[bottom_index_base + y0 * width + x0];
|
261 |
-
T U01 = offset_bottom_data[bottom_index_base + y1 * width + x0];
|
262 |
-
T U10 = offset_bottom_data[bottom_index_base + y0 * width + x1];
|
263 |
-
T U11 = offset_bottom_data[bottom_index_base + y1 * width + x1];
|
264 |
-
T diff_x = (U11 * dist_y + U10 * (1 - dist_y) - U01 * dist_y - U00 * (1 - dist_y)) * trans_std * diff_val;
|
265 |
-
diff_x *= roi_width;
|
266 |
-
T diff_y = (U11 * dist_x + U01 * (1 - dist_x) - U10 * dist_x - U00 * (1 - dist_x)) * trans_std * diff_val;
|
267 |
-
diff_y *= roi_height;
|
268 |
-
|
269 |
-
/*atomicAdd(bottom_trans_diff + (((n * num_classes + class_id) * 2) * part_size + part_h) * part_size + part_w, diff_x);
|
270 |
-
atomicAdd(bottom_trans_diff + (((n * num_classes + class_id) * 2 + 1) * part_size + part_h) * part_size + part_w, diff_y);*/
|
271 |
-
*(bottom_trans_diff + (((n * num_classes + class_id) * 2) * part_size + part_h) * part_size + part_w) += diff_x;
|
272 |
-
*(bottom_trans_diff + (((n * num_classes + class_id) * 2 + 1) * part_size + part_h) * part_size + part_w) += diff_y;
|
273 |
-
}
|
274 |
-
}
|
275 |
-
}
|
276 |
-
}
|
277 |
-
|
278 |
-
std::tuple<at::Tensor, at::Tensor>
|
279 |
-
dcn_v2_psroi_pooling_cpu_forward(const at::Tensor &input,
|
280 |
-
const at::Tensor &bbox,
|
281 |
-
const at::Tensor &trans,
|
282 |
-
const int no_trans,
|
283 |
-
const float spatial_scale,
|
284 |
-
const int output_dim,
|
285 |
-
const int group_size,
|
286 |
-
const int pooled_size,
|
287 |
-
const int part_size,
|
288 |
-
const int sample_per_part,
|
289 |
-
const float trans_std)
|
290 |
-
{
|
291 |
-
/*AT_ASSERTM(input.is_cuda(), "input must be a CUDA tensor");
|
292 |
-
AT_ASSERTM(bbox.is_cuda(), "rois must be a CUDA tensor");
|
293 |
-
AT_ASSERTM(trans.is_cuda(), "trans must be a CUDA tensor");*/
|
294 |
-
|
295 |
-
// const int batch = input.size(0);
|
296 |
-
const int channels = input.size(1);
|
297 |
-
const int height = input.size(2);
|
298 |
-
const int width = input.size(3);
|
299 |
-
const int channels_trans = no_trans ? 2 : trans.size(1);
|
300 |
-
const int num_bbox = bbox.size(0);
|
301 |
-
|
302 |
-
AT_ASSERTM(channels == output_dim, "input channels and output channels must equal");
|
303 |
-
auto pooled_height = pooled_size;
|
304 |
-
auto pooled_width = pooled_size;
|
305 |
-
|
306 |
-
auto out = at::empty({num_bbox, output_dim, pooled_height, pooled_width}, input.options());
|
307 |
-
long out_size = num_bbox * output_dim * pooled_height * pooled_width;
|
308 |
-
auto top_count = at::zeros({num_bbox, output_dim, pooled_height, pooled_width}, input.options());
|
309 |
-
|
310 |
-
const int num_classes = no_trans ? 1 : channels_trans / 2;
|
311 |
-
const int channels_each_class = no_trans ? output_dim : output_dim / num_classes;
|
312 |
-
|
313 |
-
//cudaStream_t stream = at::cuda::getCurrentCUDAStream();
|
314 |
-
|
315 |
-
if (out.numel() == 0)
|
316 |
-
{
|
317 |
-
//THCudaCheck(cudaGetLastError());
|
318 |
-
return std::make_tuple(out, top_count);
|
319 |
-
}
|
320 |
-
|
321 |
-
/*dim3 grid(std::min(THCCeilDiv(out_size, 512L), 4096L));
|
322 |
-
dim3 block(512);*/
|
323 |
-
|
324 |
-
AT_DISPATCH_FLOATING_TYPES(input.scalar_type(), "dcn_v2_psroi_pooling_cpu_forward", [&] {
|
325 |
-
DeformablePSROIPoolForwardKernelCpu<scalar_t>(
|
326 |
-
out_size,
|
327 |
-
input.contiguous().data_ptr<scalar_t>(),
|
328 |
-
spatial_scale,
|
329 |
-
channels,
|
330 |
-
height, width,
|
331 |
-
pooled_height,
|
332 |
-
pooled_width,
|
333 |
-
bbox.contiguous().data_ptr<scalar_t>(),
|
334 |
-
trans.contiguous().data_ptr<scalar_t>(),
|
335 |
-
no_trans,
|
336 |
-
trans_std,
|
337 |
-
sample_per_part,
|
338 |
-
output_dim,
|
339 |
-
group_size,
|
340 |
-
part_size,
|
341 |
-
num_classes,
|
342 |
-
channels_each_class,
|
343 |
-
out.data_ptr<scalar_t>(),
|
344 |
-
top_count.data_ptr<scalar_t>());
|
345 |
-
});
|
346 |
-
//THCudaCheck(cudaGetLastError());
|
347 |
-
return std::make_tuple(out, top_count);
|
348 |
-
}
|
349 |
-
|
350 |
-
std::tuple<at::Tensor, at::Tensor>
|
351 |
-
dcn_v2_psroi_pooling_cpu_backward(const at::Tensor &out_grad,
|
352 |
-
const at::Tensor &input,
|
353 |
-
const at::Tensor &bbox,
|
354 |
-
const at::Tensor &trans,
|
355 |
-
const at::Tensor &top_count,
|
356 |
-
const int no_trans,
|
357 |
-
const float spatial_scale,
|
358 |
-
const int output_dim,
|
359 |
-
const int group_size,
|
360 |
-
const int pooled_size,
|
361 |
-
const int part_size,
|
362 |
-
const int sample_per_part,
|
363 |
-
const float trans_std)
|
364 |
-
{
|
365 |
-
/*AT_ASSERTM(out_grad.is_cuda(), "out_grad must be a CUDA tensor");
|
366 |
-
AT_ASSERTM(input.is_cuda(), "input must be a CUDA tensor");
|
367 |
-
AT_ASSERTM(bbox.is_cuda(), "bbox must be a CUDA tensor");
|
368 |
-
AT_ASSERTM(trans.is_cuda(), "trans must be a CUDA tensor");
|
369 |
-
AT_ASSERTM(top_count.is_cuda(), "top_count must be a CUDA tensor");*/
|
370 |
-
|
371 |
-
const int batch = input.size(0);
|
372 |
-
const int channels = input.size(1);
|
373 |
-
const int height = input.size(2);
|
374 |
-
const int width = input.size(3);
|
375 |
-
const int channels_trans = no_trans ? 2 : trans.size(1);
|
376 |
-
const int num_bbox = bbox.size(0);
|
377 |
-
|
378 |
-
AT_ASSERTM(channels == output_dim, "input channels and output channels must equal");
|
379 |
-
auto pooled_height = pooled_size;
|
380 |
-
auto pooled_width = pooled_size;
|
381 |
-
long out_size = num_bbox * output_dim * pooled_height * pooled_width;
|
382 |
-
const int num_classes = no_trans ? 1 : channels_trans / 2;
|
383 |
-
const int channels_each_class = no_trans ? output_dim : output_dim / num_classes;
|
384 |
-
|
385 |
-
auto input_grad = at::zeros({batch, channels, height, width}, out_grad.options());
|
386 |
-
auto trans_grad = at::zeros_like(trans);
|
387 |
-
|
388 |
-
if (input_grad.numel() == 0)
|
389 |
-
{
|
390 |
-
//THCudaCheck(cudaGetLastError());
|
391 |
-
return std::make_tuple(input_grad, trans_grad);
|
392 |
-
}
|
393 |
-
|
394 |
-
/*dim3 grid(std::min(THCCeilDiv(out_size, 512L), 4096L));
|
395 |
-
dim3 block(512);
|
396 |
-
cudaStream_t stream = at::cuda::getCurrentCUDAStream();*/
|
397 |
-
|
398 |
-
AT_DISPATCH_FLOATING_TYPES(out_grad.scalar_type(), "dcn_v2_psroi_pooling_cpu_backward", [&] {
|
399 |
-
DeformablePSROIPoolBackwardAccKernelCpu<scalar_t>(
|
400 |
-
out_size,
|
401 |
-
out_grad.contiguous().data_ptr<scalar_t>(),
|
402 |
-
top_count.contiguous().data_ptr<scalar_t>(),
|
403 |
-
num_bbox,
|
404 |
-
spatial_scale,
|
405 |
-
channels,
|
406 |
-
height,
|
407 |
-
width,
|
408 |
-
pooled_height,
|
409 |
-
pooled_width,
|
410 |
-
output_dim,
|
411 |
-
input_grad.contiguous().data_ptr<scalar_t>(),
|
412 |
-
trans_grad.contiguous().data_ptr<scalar_t>(),
|
413 |
-
input.contiguous().data_ptr<scalar_t>(),
|
414 |
-
bbox.contiguous().data_ptr<scalar_t>(),
|
415 |
-
trans.contiguous().data_ptr<scalar_t>(),
|
416 |
-
no_trans,
|
417 |
-
trans_std,
|
418 |
-
sample_per_part,
|
419 |
-
group_size,
|
420 |
-
part_size,
|
421 |
-
num_classes,
|
422 |
-
channels_each_class);
|
423 |
-
});
|
424 |
-
//THCudaCheck(cudaGetLastError());
|
425 |
-
return std::make_tuple(input_grad, trans_grad);
|
426 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|