import torch from ..inference import RPNPostProcessor from ..utils import permute_and_flatten from maskrcnn_benchmark.modeling.box_coder import BoxCoder from maskrcnn_benchmark.modeling.utils import cat from maskrcnn_benchmark.structures.bounding_box import BoxList from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist from maskrcnn_benchmark.structures.boxlist_ops import boxlist_nms from maskrcnn_benchmark.structures.boxlist_ops import remove_small_boxes class FCOSPostProcessor(torch.nn.Module): """ Performs post-processing on the outputs of the RetinaNet boxes. This is only used in the testing. """ def __init__( self, pre_nms_thresh, pre_nms_top_n, nms_thresh, fpn_post_nms_top_n, min_size, num_classes, ): """ Arguments: pre_nms_thresh (float) pre_nms_top_n (int) nms_thresh (float) fpn_post_nms_top_n (int) min_size (int) num_classes (int) box_coder (BoxCoder) """ super(FCOSPostProcessor, self).__init__() self.pre_nms_thresh = pre_nms_thresh self.pre_nms_top_n = pre_nms_top_n self.nms_thresh = nms_thresh self.fpn_post_nms_top_n = fpn_post_nms_top_n self.min_size = min_size self.num_classes = num_classes def forward_for_single_feature_map( self, locations, box_cls, box_regression, centerness, image_sizes): """ Arguments: anchors: list[BoxList] box_cls: tensor of size N, A * C, H, W box_regression: tensor of size N, A * 4, H, W """ N, C, H, W = box_cls.shape # put in the same format as locations box_cls = box_cls.view(N, C, H, W).permute(0, 2, 3, 1) box_cls = box_cls.reshape(N, -1, C).sigmoid() box_regression = box_regression.view(N, 4, H, W).permute(0, 2, 3, 1) box_regression = box_regression.reshape(N, -1, 4) centerness = centerness.view(N, 1, H, W).permute(0, 2, 3, 1) centerness = centerness.reshape(N, -1).sigmoid() candidate_inds = box_cls > self.pre_nms_thresh pre_nms_top_n = candidate_inds.view(N, -1).sum(1) pre_nms_top_n = pre_nms_top_n.clamp(max=self.pre_nms_top_n) #print('pre_nms_top_n: ', pre_nms_top_n) # multiply the classification scores with centerness scores box_cls = box_cls * centerness[:, :, None] results = [] for i in range(N): per_box_cls = box_cls[i] per_candidate_inds = candidate_inds[i] per_box_cls = per_box_cls[per_candidate_inds] per_candidate_nonzeros = per_candidate_inds.nonzero() per_box_loc = per_candidate_nonzeros[:, 0] per_class = per_candidate_nonzeros[:, 1] + 1 per_box_regression = box_regression[i] per_box_regression = per_box_regression[per_box_loc] per_locations = locations[per_box_loc] per_pre_nms_top_n = pre_nms_top_n[i] if per_candidate_inds.sum().item() > per_pre_nms_top_n.item(): per_box_cls, top_k_indices = \ per_box_cls.topk(per_pre_nms_top_n, sorted=False) per_class = per_class[top_k_indices] per_box_regression = per_box_regression[top_k_indices] per_locations = per_locations[top_k_indices] detections = torch.stack([ per_locations[:, 0] - per_box_regression[:, 0], per_locations[:, 1] - per_box_regression[:, 1], per_locations[:, 0] + per_box_regression[:, 2], per_locations[:, 1] + per_box_regression[:, 3], ], dim=1) h, w = image_sizes[i] boxlist = BoxList(detections, (int(w), int(h)), mode="xyxy") boxlist.add_field("labels", per_class) boxlist.add_field("scores", per_box_cls) boxlist = boxlist.clip_to_image(remove_empty=False) boxlist = remove_small_boxes(boxlist, self.min_size) results.append(boxlist) return results def forward(self, locations, box_cls, box_regression, centerness, image_sizes): """ Arguments: anchors: list[list[BoxList]] box_cls: list[tensor] box_regression: list[tensor] image_sizes: list[(h, w)] Returns: boxlists (list[BoxList]): the post-processed anchors, after applying box decoding and NMS """ sampled_boxes = [] for _, (l, o, b, c) in enumerate(zip(locations, box_cls, box_regression, centerness)): sampled_boxes.append( self.forward_for_single_feature_map( l, o, b, c, image_sizes ) ) boxlists = list(zip(*sampled_boxes)) boxlists = [cat_boxlist(boxlist) for boxlist in boxlists] boxlists = self.select_over_all_levels(boxlists) return boxlists # TODO very similar to filter_results from PostProcessor # but filter_results is per image # TODO Yang: solve this issue in the future. No good solution # right now. def select_over_all_levels(self, boxlists): num_images = len(boxlists) results = [] for i in range(num_images): scores = boxlists[i].get_field("scores") labels = boxlists[i].get_field("labels") boxes = boxlists[i].bbox boxlist = boxlists[i] result = [] # skip the background for j in range(1, self.num_classes): inds = (labels == j).nonzero().view(-1) scores_j = scores[inds] boxes_j = boxes[inds, :].view(-1, 4) boxlist_for_class = BoxList(boxes_j, boxlist.size, mode="xyxy") boxlist_for_class.add_field("scores", scores_j) boxlist_for_class = boxlist_nms( boxlist_for_class, self.nms_thresh, score_field="scores" ) num_labels = len(boxlist_for_class) boxlist_for_class.add_field( "labels", torch.full((num_labels,), j, dtype=torch.int64, device=scores.device) ) result.append(boxlist_for_class) result = cat_boxlist(result) number_of_detections = len(result) # Limit to max_per_image detections **over all classes** if number_of_detections > self.fpn_post_nms_top_n > 0: cls_scores = result.get_field("scores") image_thresh, _ = torch.kthvalue( cls_scores.cpu(), number_of_detections - self.fpn_post_nms_top_n + 1 ) keep = cls_scores >= image_thresh.item() keep = torch.nonzero(keep).squeeze(1) result = result[keep] results.append(result) return results def make_fcos_postprocessor(config, is_train=False): pre_nms_thresh = config.MODEL.FCOS.INFERENCE_TH pre_nms_top_n = config.MODEL.FCOS.PRE_NMS_TOP_N nms_thresh = config.MODEL.FCOS.NMS_TH fpn_post_nms_top_n = config.TEST.DETECTIONS_PER_IMG if is_train: fpn_post_nms_top_n = config.MODEL.RPN.FPN_POST_NMS_TOP_N_TRAIN pre_nms_top_n = config.MODEL.RPN.PRE_NMS_TOP_N_TRAIN pre_nms_thresh = 0.01 box_selector = FCOSPostProcessor( pre_nms_thresh=pre_nms_thresh, pre_nms_top_n=pre_nms_top_n, nms_thresh=nms_thresh, fpn_post_nms_top_n=fpn_post_nms_top_n, min_size=0, num_classes=config.MODEL.FCOS.NUM_CLASSES ) return box_selector