heartdisease / app.py
DA1212's picture
update app.py
9de2c6c verified
raw
history blame
1.7 kB
import pickle
import streamlit as st
from streamlit_option_menu import option_menu
#loading the saved data
heart_disease_model = pickle.load(open("heart_disease_model.sav",'rb'))
st.title('Heart Disease Prediction using ML')
col1, col2, col3 = st.columns(3)
with col1:
age = st.text_input('Age')
with col2:
sex = st.text_input('Sex')
with col3:
cp = st.text_input('Chest Pain types')
with col1:
trestbps = st.text_input('Resting Blood Pressure')
with col2:
chol = st.text_input('Serum Cholestoral in mg/dl')
with col3:
fbs = st.text_input('Fasting Blood Sugar > 120 mg/dl')
with col1:
restecg = st.text_input('Resting Electrocardiographic results')
with col2:
thalach = st.text_input('Maximum Heart Rate achieved')
with col3:
exang = st.text_input('Exercise Induced Angina')
with col1:
oldpeak = st.text_input('ST depression induced by exercise')
with col2:
slope = st.text_input('Slope of the peak exercise ST segment')
with col3:
ca = st.text_input('Major vessels colored by flourosopy')
with col1:
thal = st.text_input('thal: 0 = normal; 1 = fixed defect; 2 = reversable defect')
# code for Prediction
heart_diagnosis = ''
# creating a button for Prediction
if st.button('Heart Disease Test Result'):
heart_prediction = heart_disease_model.predict([[
'age', 'sex',' cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach', 'exang', 'oldpeak', 'slope', 'ca', 'thal']])
if (heart_prediction[0] == 1):
heart_diagnosis = 'The person is having heart disease'
else:
heart_diagnosis = 'The person does not have any heart disease'
st.success(heart_diagnosis)