Spaces:
No application file
No application file
File size: 12,144 Bytes
6fc8840 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
import os
import sys
sys.path.append(os.path.abspath(os.path.dirname(os.getcwd())))
os.chdir("../")
import cv2
import gradio as gr
import numpy as np
from pathlib import Path
from matplotlib import pyplot as plt
import torch
import tempfile
# from omegaconf import OmegaConf
# from sam_segment import predict_masks_with_sam
from stable_diffusion_inpaint import replace_img_with_sd
from lama_inpaint import inpaint_img_with_lama, build_lama_model, inpaint_img_with_builded_lama
from utils import load_img_to_array, save_array_to_img, dilate_mask, \
show_mask, show_points
from PIL import Image
from segment_anything import SamPredictor, sam_model_registry
import argparse
def setup_args(parser):
parser.add_argument(
"--lama_config", type=str,
default="./lama/configs/prediction/default.yaml",
help="The path to the config file of lama model. "
"Default: the config of big-lama",
)
parser.add_argument(
"--lama_ckpt", type=str,
default="pretrained_models/big-lama",
help="The path to the lama checkpoint.",
)
parser.add_argument(
"--sam_ckpt", type=str,
default="./pretrained_models/sam_vit_h_4b8939.pth",
help="The path to the SAM checkpoint to use for mask generation.",
)
def mkstemp(suffix, dir=None):
fd, path = tempfile.mkstemp(suffix=f"{suffix}", dir=dir)
os.close(fd)
return Path(path)
def get_sam_feat(img):
model['sam'].set_image(img)
features = model['sam'].features
orig_h = model['sam'].orig_h
orig_w = model['sam'].orig_w
input_h = model['sam'].input_h
input_w = model['sam'].input_w
model['sam'].reset_image()
return features, orig_h, orig_w, input_h, input_w
def get_replace_img_with_sd(image, mask, image_resolution, text_prompt):
device = "cuda" if torch.cuda.is_available() else "cpu"
if len(mask.shape)==3:
mask = mask[:,:,0]
np_image = np.array(image, dtype=np.uint8)
H, W, C = np_image.shape
np_image = HWC3(np_image)
np_image = resize_image(np_image, image_resolution)
img_replaced = replace_img_with_sd(np_image, mask, text_prompt, device=device)
img_replaced = img_replaced.astype(np.uint8)
return img_replaced
def HWC3(x):
assert x.dtype == np.uint8
if x.ndim == 2:
x = x[:, :, None]
assert x.ndim == 3
H, W, C = x.shape
assert C == 1 or C == 3 or C == 4
if C == 3:
return x
if C == 1:
return np.concatenate([x, x, x], axis=2)
if C == 4:
color = x[:, :, 0:3].astype(np.float32)
alpha = x[:, :, 3:4].astype(np.float32) / 255.0
y = color * alpha + 255.0 * (1.0 - alpha)
y = y.clip(0, 255).astype(np.uint8)
return y
def resize_image(input_image, resolution):
H, W, C = input_image.shape
H = float(H)
W = float(W)
k = float(resolution) / min(H, W)
H *= k
W *= k
H = int(np.round(H / 64.0)) * 64
W = int(np.round(W / 64.0)) * 64
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
return img
def resize_points(clicked_points, original_shape, resolution):
original_height, original_width, _ = original_shape
original_height = float(original_height)
original_width = float(original_width)
scale_factor = float(resolution) / min(original_height, original_width)
resized_points = []
for point in clicked_points:
x, y, lab = point
resized_x = int(round(x * scale_factor))
resized_y = int(round(y * scale_factor))
resized_point = (resized_x, resized_y, lab)
resized_points.append(resized_point)
return resized_points
def get_click_mask(clicked_points, features, orig_h, orig_w, input_h, input_w):
# model['sam'].set_image(image)
model['sam'].is_image_set = True
model['sam'].features = features
model['sam'].orig_h = orig_h
model['sam'].orig_w = orig_w
model['sam'].input_h = input_h
model['sam'].input_w = input_w
# Separate the points and labels
points, labels = zip(*[(point[:2], point[2])
for point in clicked_points])
# Convert the points and labels to numpy arrays
input_point = np.array(points)
input_label = np.array(labels)
masks, _, _ = model['sam'].predict(
point_coords=input_point,
point_labels=input_label,
multimask_output=False,
)
if dilate_kernel_size is not None:
masks = [dilate_mask(mask, dilate_kernel_size.value) for mask in masks]
else:
masks = [mask for mask in masks]
return masks
def process_image_click(original_image, point_prompt, clicked_points, image_resolution, features, orig_h, orig_w, input_h, input_w, evt: gr.SelectData):
clicked_coords = evt.index
x, y = clicked_coords
label = point_prompt
lab = 1 if label == "Foreground Point" else 0
clicked_points.append((x, y, lab))
input_image = np.array(original_image, dtype=np.uint8)
H, W, C = input_image.shape
input_image = HWC3(input_image)
img = resize_image(input_image, image_resolution)
# Update the clicked_points
resized_points = resize_points(
clicked_points, input_image.shape, image_resolution
)
mask_click_np = get_click_mask(resized_points, features, orig_h, orig_w, input_h, input_w)
# Convert mask_click_np to HWC format
mask_click_np = np.transpose(mask_click_np, (1, 2, 0)) * 255.0
mask_image = HWC3(mask_click_np.astype(np.uint8))
mask_image = cv2.resize(
mask_image, (W, H), interpolation=cv2.INTER_LINEAR)
# mask_image = Image.fromarray(mask_image_tmp)
# Draw circles for all clicked points
edited_image = input_image
for x, y, lab in clicked_points:
# Set the circle color based on the label
color = (255, 0, 0) if lab == 1 else (0, 0, 255)
# Draw the circle
edited_image = cv2.circle(edited_image, (x, y), 20, color, -1)
# Set the opacity for the mask_image and edited_image
opacity_mask = 0.75
opacity_edited = 1.0
# Combine the edited_image and the mask_image using cv2.addWeighted()
overlay_image = cv2.addWeighted(
edited_image,
opacity_edited,
(mask_image *
np.array([0 / 255, 255 / 255, 0 / 255])).astype(np.uint8),
opacity_mask,
0,
)
return (
overlay_image,
# Image.fromarray(overlay_image),
clicked_points,
# Image.fromarray(mask_image),
mask_image
)
def image_upload(image, image_resolution):
if image is not None:
np_image = np.array(image, dtype=np.uint8)
H, W, C = np_image.shape
np_image = HWC3(np_image)
np_image = resize_image(np_image, image_resolution)
features, orig_h, orig_w, input_h, input_w = get_sam_feat(np_image)
return image, features, orig_h, orig_w, input_h, input_w
else:
return None, None, None, None, None, None
def get_inpainted_img(image, mask, image_resolution):
lama_config = args.lama_config
device = "cuda" if torch.cuda.is_available() else "cpu"
if len(mask.shape)==3:
mask = mask[:,:,0]
img_inpainted = inpaint_img_with_builded_lama(
model['lama'], image, mask, lama_config, device=device)
return img_inpainted
# get args
parser = argparse.ArgumentParser()
setup_args(parser)
args = parser.parse_args(sys.argv[1:])
# build models
model = {}
# build the sam model
model_type="vit_h"
ckpt_p=args.sam_ckpt
model_sam = sam_model_registry[model_type](checkpoint=ckpt_p)
device = "cuda" if torch.cuda.is_available() else "cpu"
model_sam.to(device=device)
model['sam'] = SamPredictor(model_sam)
# build the lama model
lama_config = args.lama_config
lama_ckpt = args.lama_ckpt
device = "cuda" if torch.cuda.is_available() else "cpu"
model['lama'] = build_lama_model(lama_config, lama_ckpt, device=device)
button_size = (100,50)
with gr.Blocks() as demo:
clicked_points = gr.State([])
origin_image = gr.State(None)
click_mask = gr.State(None)
features = gr.State(None)
orig_h = gr.State(None)
orig_w = gr.State(None)
input_h = gr.State(None)
input_w = gr.State(None)
with gr.Row():
with gr.Column(variant="panel"):
with gr.Row():
gr.Markdown("## Input Image")
with gr.Row():
# img = gr.Image(label="Input Image")
source_image_click = gr.Image(
type="numpy",
height=300,
interactive=True,
label="Image: Upload an image and click the region you want to edit.",
)
with gr.Row():
point_prompt = gr.Radio(
choices=["Foreground Point",
"Background Point"],
value="Foreground Point",
label="Point Label",
interactive=True,
show_label=False,
)
image_resolution = gr.Slider(
label="Image Resolution",
minimum=256,
maximum=768,
value=512,
step=64,
)
dilate_kernel_size = gr.Slider(label="Dilate Kernel Size", minimum=0, maximum=30, step=1, value=3)
with gr.Column(variant="panel"):
with gr.Row():
gr.Markdown("## Control Panel")
text_prompt = gr.Textbox(label="Text Prompt")
lama = gr.Button("Inpaint Image", variant="primary")
replace_sd = gr.Button("Replace Anything with SD", variant="primary")
clear_button_image = gr.Button(value="Reset", label="Reset", variant="secondary")
# todo: maybe we can delete this row, for it's unnecessary to show the original mask for customers
with gr.Row(variant="panel"):
with gr.Column():
with gr.Row():
gr.Markdown("## Mask")
with gr.Row():
click_mask = gr.Image(type="numpy", label="Click Mask")
with gr.Column():
with gr.Row():
gr.Markdown("## Image Removed with Mask")
with gr.Row():
img_rm_with_mask = gr.Image(
type="numpy", label="Image Removed with Mask")
with gr.Column():
with gr.Row():
gr.Markdown("## Replace Anything with Mask")
with gr.Row():
img_replace_with_mask = gr.Image(
type="numpy", label="Image Replace Anything with Mask")
source_image_click.upload(
image_upload,
inputs=[source_image_click, image_resolution],
outputs=[origin_image, features, orig_h, orig_w, input_h, input_w],
)
source_image_click.select(
process_image_click,
inputs=[origin_image, point_prompt,
clicked_points, image_resolution,
features, orig_h, orig_w, input_h, input_w],
outputs=[source_image_click, clicked_points, click_mask],
show_progress=True,
queue=True,
)
# sam_mask.click(
# get_masked_img,
# [origin_image, w, h, features, orig_h, orig_w, input_h, input_w, dilate_kernel_size],
# [img_with_mask_0, img_with_mask_1, img_with_mask_2, mask_0, mask_1, mask_2]
# )
lama.click(
get_inpainted_img,
[origin_image, click_mask, image_resolution],
[img_rm_with_mask]
)
replace_sd.click(
get_replace_img_with_sd,
[origin_image, click_mask, image_resolution, text_prompt],
[img_replace_with_mask]
)
def reset(*args):
return [None for _ in args]
clear_button_image.click(
reset,
[origin_image, features, click_mask, img_rm_with_mask, img_replace_with_mask],
[origin_image, features, click_mask, img_rm_with_mask, img_replace_with_mask]
)
if __name__ == "__main__":
demo.queue(api_open=False).launch(server_name='0.0.0.0', share=False, debug=True) |