import os import sys sys.path.append(os.path.abspath(os.path.dirname(os.getcwd()))) os.chdir("../") import cv2 import gradio as gr import numpy as np from pathlib import Path from matplotlib import pyplot as plt import torch import tempfile # from omegaconf import OmegaConf # from sam_segment import predict_masks_with_sam from stable_diffusion_inpaint import replace_img_with_sd from lama_inpaint import inpaint_img_with_lama, build_lama_model, inpaint_img_with_builded_lama from utils import load_img_to_array, save_array_to_img, dilate_mask, \ show_mask, show_points from PIL import Image from segment_anything import SamPredictor, sam_model_registry import argparse def setup_args(parser): parser.add_argument( "--lama_config", type=str, default="./lama/configs/prediction/default.yaml", help="The path to the config file of lama model. " "Default: the config of big-lama", ) parser.add_argument( "--lama_ckpt", type=str, default="pretrained_models/big-lama", help="The path to the lama checkpoint.", ) parser.add_argument( "--sam_ckpt", type=str, default="./pretrained_models/sam_vit_h_4b8939.pth", help="The path to the SAM checkpoint to use for mask generation.", ) def mkstemp(suffix, dir=None): fd, path = tempfile.mkstemp(suffix=f"{suffix}", dir=dir) os.close(fd) return Path(path) def get_sam_feat(img): model['sam'].set_image(img) features = model['sam'].features orig_h = model['sam'].orig_h orig_w = model['sam'].orig_w input_h = model['sam'].input_h input_w = model['sam'].input_w model['sam'].reset_image() return features, orig_h, orig_w, input_h, input_w def get_replace_img_with_sd(image, mask, image_resolution, text_prompt): device = "cuda" if torch.cuda.is_available() else "cpu" if len(mask.shape)==3: mask = mask[:,:,0] np_image = np.array(image, dtype=np.uint8) H, W, C = np_image.shape np_image = HWC3(np_image) np_image = resize_image(np_image, image_resolution) img_replaced = replace_img_with_sd(np_image, mask, text_prompt, device=device) img_replaced = img_replaced.astype(np.uint8) return img_replaced def HWC3(x): assert x.dtype == np.uint8 if x.ndim == 2: x = x[:, :, None] assert x.ndim == 3 H, W, C = x.shape assert C == 1 or C == 3 or C == 4 if C == 3: return x if C == 1: return np.concatenate([x, x, x], axis=2) if C == 4: color = x[:, :, 0:3].astype(np.float32) alpha = x[:, :, 3:4].astype(np.float32) / 255.0 y = color * alpha + 255.0 * (1.0 - alpha) y = y.clip(0, 255).astype(np.uint8) return y def resize_image(input_image, resolution): H, W, C = input_image.shape H = float(H) W = float(W) k = float(resolution) / min(H, W) H *= k W *= k H = int(np.round(H / 64.0)) * 64 W = int(np.round(W / 64.0)) * 64 img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA) return img def resize_points(clicked_points, original_shape, resolution): original_height, original_width, _ = original_shape original_height = float(original_height) original_width = float(original_width) scale_factor = float(resolution) / min(original_height, original_width) resized_points = [] for point in clicked_points: x, y, lab = point resized_x = int(round(x * scale_factor)) resized_y = int(round(y * scale_factor)) resized_point = (resized_x, resized_y, lab) resized_points.append(resized_point) return resized_points def get_click_mask(clicked_points, features, orig_h, orig_w, input_h, input_w): # model['sam'].set_image(image) model['sam'].is_image_set = True model['sam'].features = features model['sam'].orig_h = orig_h model['sam'].orig_w = orig_w model['sam'].input_h = input_h model['sam'].input_w = input_w # Separate the points and labels points, labels = zip(*[(point[:2], point[2]) for point in clicked_points]) # Convert the points and labels to numpy arrays input_point = np.array(points) input_label = np.array(labels) masks, _, _ = model['sam'].predict( point_coords=input_point, point_labels=input_label, multimask_output=False, ) if dilate_kernel_size is not None: masks = [dilate_mask(mask, dilate_kernel_size.value) for mask in masks] else: masks = [mask for mask in masks] return masks def process_image_click(original_image, point_prompt, clicked_points, image_resolution, features, orig_h, orig_w, input_h, input_w, evt: gr.SelectData): clicked_coords = evt.index x, y = clicked_coords label = point_prompt lab = 1 if label == "Foreground Point" else 0 clicked_points.append((x, y, lab)) input_image = np.array(original_image, dtype=np.uint8) H, W, C = input_image.shape input_image = HWC3(input_image) img = resize_image(input_image, image_resolution) # Update the clicked_points resized_points = resize_points( clicked_points, input_image.shape, image_resolution ) mask_click_np = get_click_mask(resized_points, features, orig_h, orig_w, input_h, input_w) # Convert mask_click_np to HWC format mask_click_np = np.transpose(mask_click_np, (1, 2, 0)) * 255.0 mask_image = HWC3(mask_click_np.astype(np.uint8)) mask_image = cv2.resize( mask_image, (W, H), interpolation=cv2.INTER_LINEAR) # mask_image = Image.fromarray(mask_image_tmp) # Draw circles for all clicked points edited_image = input_image for x, y, lab in clicked_points: # Set the circle color based on the label color = (255, 0, 0) if lab == 1 else (0, 0, 255) # Draw the circle edited_image = cv2.circle(edited_image, (x, y), 20, color, -1) # Set the opacity for the mask_image and edited_image opacity_mask = 0.75 opacity_edited = 1.0 # Combine the edited_image and the mask_image using cv2.addWeighted() overlay_image = cv2.addWeighted( edited_image, opacity_edited, (mask_image * np.array([0 / 255, 255 / 255, 0 / 255])).astype(np.uint8), opacity_mask, 0, ) return ( overlay_image, # Image.fromarray(overlay_image), clicked_points, # Image.fromarray(mask_image), mask_image ) def image_upload(image, image_resolution): if image is not None: np_image = np.array(image, dtype=np.uint8) H, W, C = np_image.shape np_image = HWC3(np_image) np_image = resize_image(np_image, image_resolution) features, orig_h, orig_w, input_h, input_w = get_sam_feat(np_image) return image, features, orig_h, orig_w, input_h, input_w else: return None, None, None, None, None, None def get_inpainted_img(image, mask, image_resolution): lama_config = args.lama_config device = "cuda" if torch.cuda.is_available() else "cpu" if len(mask.shape)==3: mask = mask[:,:,0] img_inpainted = inpaint_img_with_builded_lama( model['lama'], image, mask, lama_config, device=device) return img_inpainted # get args parser = argparse.ArgumentParser() setup_args(parser) args = parser.parse_args(sys.argv[1:]) # build models model = {} # build the sam model model_type="vit_h" ckpt_p=args.sam_ckpt model_sam = sam_model_registry[model_type](checkpoint=ckpt_p) device = "cuda" if torch.cuda.is_available() else "cpu" model_sam.to(device=device) model['sam'] = SamPredictor(model_sam) # build the lama model lama_config = args.lama_config lama_ckpt = args.lama_ckpt device = "cuda" if torch.cuda.is_available() else "cpu" model['lama'] = build_lama_model(lama_config, lama_ckpt, device=device) button_size = (100,50) with gr.Blocks() as demo: clicked_points = gr.State([]) origin_image = gr.State(None) click_mask = gr.State(None) features = gr.State(None) orig_h = gr.State(None) orig_w = gr.State(None) input_h = gr.State(None) input_w = gr.State(None) with gr.Row(): with gr.Column(variant="panel"): with gr.Row(): gr.Markdown("## Input Image") with gr.Row(): # img = gr.Image(label="Input Image") source_image_click = gr.Image( type="numpy", height=300, interactive=True, label="Image: Upload an image and click the region you want to edit.", ) with gr.Row(): point_prompt = gr.Radio( choices=["Foreground Point", "Background Point"], value="Foreground Point", label="Point Label", interactive=True, show_label=False, ) image_resolution = gr.Slider( label="Image Resolution", minimum=256, maximum=768, value=512, step=64, ) dilate_kernel_size = gr.Slider(label="Dilate Kernel Size", minimum=0, maximum=30, step=1, value=3) with gr.Column(variant="panel"): with gr.Row(): gr.Markdown("## Control Panel") text_prompt = gr.Textbox(label="Text Prompt") lama = gr.Button("Inpaint Image", variant="primary") replace_sd = gr.Button("Replace Anything with SD", variant="primary") clear_button_image = gr.Button(value="Reset", label="Reset", variant="secondary") # todo: maybe we can delete this row, for it's unnecessary to show the original mask for customers with gr.Row(variant="panel"): with gr.Column(): with gr.Row(): gr.Markdown("## Mask") with gr.Row(): click_mask = gr.Image(type="numpy", label="Click Mask") with gr.Column(): with gr.Row(): gr.Markdown("## Image Removed with Mask") with gr.Row(): img_rm_with_mask = gr.Image( type="numpy", label="Image Removed with Mask") with gr.Column(): with gr.Row(): gr.Markdown("## Replace Anything with Mask") with gr.Row(): img_replace_with_mask = gr.Image( type="numpy", label="Image Replace Anything with Mask") source_image_click.upload( image_upload, inputs=[source_image_click, image_resolution], outputs=[origin_image, features, orig_h, orig_w, input_h, input_w], ) source_image_click.select( process_image_click, inputs=[origin_image, point_prompt, clicked_points, image_resolution, features, orig_h, orig_w, input_h, input_w], outputs=[source_image_click, clicked_points, click_mask], show_progress=True, queue=True, ) # sam_mask.click( # get_masked_img, # [origin_image, w, h, features, orig_h, orig_w, input_h, input_w, dilate_kernel_size], # [img_with_mask_0, img_with_mask_1, img_with_mask_2, mask_0, mask_1, mask_2] # ) lama.click( get_inpainted_img, [origin_image, click_mask, image_resolution], [img_rm_with_mask] ) replace_sd.click( get_replace_img_with_sd, [origin_image, click_mask, image_resolution, text_prompt], [img_replace_with_mask] ) def reset(*args): return [None for _ in args] clear_button_image.click( reset, [origin_image, features, click_mask, img_rm_with_mask, img_replace_with_mask], [origin_image, features, click_mask, img_rm_with_mask, img_replace_with_mask] ) if __name__ == "__main__": demo.queue(api_open=False).launch(server_name='0.0.0.0', share=False, debug=True)