Disfluency-large / utils.py
LeTruongVu2k1
adding JointBERT IDSF checkpoint folder, load_model.py and utils.py from IDSF; modified app.py and requirements.txt
2720879
raw
history blame
3.37 kB
import logging
import os
import random
import numpy as np
import torch
from model import JointPhoBERT, JointXLMR
from seqeval.metrics import f1_score, precision_score, recall_score
from transformers import (
AutoTokenizer,
RobertaConfig,
XLMRobertaConfig,
XLMRobertaTokenizer,
)
MODEL_CLASSES = {
"xlmr": (XLMRobertaConfig, JointXLMR, XLMRobertaTokenizer),
"phobert": (RobertaConfig, JointPhoBERT, AutoTokenizer),
}
MODEL_PATH_MAP = {
"xlmr": "xlm-roberta-base",
"phobert": "vinai/phobert-base",
}
def get_intent_labels(args):
return [
label.strip()
for label in open(os.path.join(args.data_dir, args.token_level, args.intent_label_file), "r", encoding="utf-8")
]
def get_slot_labels(args):
return [
label.strip()
for label in open(os.path.join(args.data_dir, args.token_level, args.slot_label_file), "r", encoding="utf-8")
]
def load_tokenizer(args):
return MODEL_CLASSES[args.model_type][2].from_pretrained(args.model_name_or_path)
def init_logger():
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if not args.no_cuda and torch.cuda.is_available():
torch.cuda.manual_seed_all(args.seed)
def compute_metrics(intent_preds, intent_labels, slot_preds, slot_labels):
assert len(intent_preds) == len(intent_labels) == len(slot_preds) == len(slot_labels)
results = {}
intent_result = get_intent_acc(intent_preds, intent_labels)
slot_result = get_slot_metrics(slot_preds, slot_labels)
sementic_result = get_sentence_frame_acc(intent_preds, intent_labels, slot_preds, slot_labels)
mean_intent_slot = (intent_result["intent_acc"] + slot_result["slot_f1"]) / 2
results.update(intent_result)
results.update(slot_result)
results.update(sementic_result)
results["mean_intent_slot"] = mean_intent_slot
return results
def get_slot_metrics(preds, labels):
assert len(preds) == len(labels)
return {
"slot_precision": precision_score(labels, preds),
"slot_recall": recall_score(labels, preds),
"slot_f1": f1_score(labels, preds),
}
def get_intent_acc(preds, labels):
acc = (preds == labels).mean()
return {"intent_acc": acc}
def read_prediction_text(args):
return [text.strip() for text in open(os.path.join(args.pred_dir, args.pred_input_file), "r", encoding="utf-8")]
def get_sentence_frame_acc(intent_preds, intent_labels, slot_preds, slot_labels):
"""For the cases that intent and all the slots are correct (in one sentence)"""
# Get the intent comparison result
intent_result = intent_preds == intent_labels
# Get the slot comparision result
slot_result = []
for preds, labels in zip(slot_preds, slot_labels):
assert len(preds) == len(labels)
one_sent_result = True
for p, l in zip(preds, labels):
if p != l:
one_sent_result = False
break
slot_result.append(one_sent_result)
slot_result = np.array(slot_result)
semantic_acc = np.multiply(intent_result, slot_result).mean()
return {"semantic_frame_acc": semantic_acc}