from utils import create_model, get_optimal_font_scale from mtcnn import MTCNN import cv2 import gradio as gr from PIL import Image import gradio model = create_model() checkpoint_path = "best_model_weights/checkpoint.ckpt" model.load_weights(checkpoint_path) detector = MTCNN() def face_mask_detection(image): img = image.copy() (h,w) = img.shape[:2] objects = detector.detect_faces(img) # https://github.com/ipazc/mtcnn/blob/master/example.ipynb for obj in objects: x, y, width, height = obj['box'] startX, startY, endX, endY = x, y, x+width, y+height #ensure the bounding boxes fall within the dimensions of the frame (startX,startY)=(max(0,startX),max(0,startY)) (endX,endY)=(min(w-1,endX), min(h-1,endY)) #extract the face ROI, convert it from BGR to RGB channel, resize it to 224,224 and preprocess it face=img[startY:endY, startX:endX] face=cv2.resize(face,(224,224)) probs = model.predict(face.reshape(1,224,224,3))[0][0] # example: result of model.predict: [[0.823] then < 0.5 -> mask, > 0.5 -> without mask is_masked = probs < 0.5 #determine the class label and color we will use to draw the bounding box and text label='Mask' if is_masked else 'No Mask' color=(0,255,0) if label=='Mask' else (0,0,255) #include the probability in the label confidence = probs if probs > 0.5 else (1-probs) label="{}: {:.2f}%".format(label,confidence*100) #display the label and bounding boxes fontScale = get_optimal_font_scale(label, endX-startX) cv2.putText(img,label,(startX+5,startY+15),cv2.FONT_HERSHEY_SIMPLEX,fontScale,color,1) cv2.rectangle(img,(startX,startY),(endX,endY),color,1) return Image.fromarray(img) title = "Face-Masked Detection" description = "This is an easy-to-use demo for detecting faces inside an image and then decide if they are wearing mask or not. MTCNN will be used for face-detection and EfficientNetB0 will be used for masked-classification." demo = gr.Interface(fn=face_mask_detection, inputs=gr.Image(shape=(224, 224)), outputs=gr.outputs.Image(type = "pil", label = "Output Image"), title=title, description=description) if __name__ == "__main__": demo.queue(max_size=10).launch()