File size: 6,401 Bytes
1966e2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "ebeba428",
   "metadata": {},
   "source": [
    "# ✅ RAG JuJutsu PoC (Notebook with Joblib, FAISS, ChatGPT API)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8bdfd3c8",
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "\n",
    "!pip install --quiet openai langchain faiss-cpu PyPDF2 sentence-transformers joblib\n",
    "!pip install ipywidgets==7.7.2\n",
    "!jupyter nbextension enable --py widgetsnbextension\n",
    "!jupyter notebook\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "49ee7721",
   "metadata": {},
   "outputs": [],
   "source": [
    "from PyPDF2 import PdfReader\n",
    "from langchain.text_splitter import RecursiveCharacterTextSplitter\n",
    "\n",
    "def load_pdf_chunks(pdf_path):\n",
    "    reader = PdfReader(pdf_path)\n",
    "    raw_text = \"\"\n",
    "    for page in reader.pages:\n",
    "        raw_text += page.extract_text() + \"\\n\"\n",
    "\n",
    "    splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)\n",
    "    return splitter.split_text(raw_text)\n",
    "\n",
    "chunks = load_pdf_chunks(\"JuJutsu-Contexto-Significado-Conexiones-Historia.pdf\")\n",
    "print(f\"Loaded {len(chunks)} chunks\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8109b626-0179-43e2-b924-65afe9af1e4e",
   "metadata": {},
   "outputs": [],
   "source": [
    "import openai"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "371c637e",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "import faiss\n",
    "import numpy as np\n",
    "import joblib\n",
    "\n",
    "def get_openai_embeddings(texts):\n",
    "    embeddings = []\n",
    "    for text in texts:\n",
    "        response = openai.Embedding.create(\n",
    "            model=\"text-embedding-3-small\",\n",
    "            input=text\n",
    "        )\n",
    "        vector = response['data'][0]['embedding']\n",
    "        embeddings.append(vector)\n",
    "    return np.array(embeddings)\n",
    "\n",
    "embeddings = get_openai_embeddings(chunks)\n",
    "index = faiss.IndexFlatL2(embeddings.shape[1])\n",
    "index.add(np.array(embeddings))\n",
    "\n",
    "joblib.dump((chunks, index), \"rag_model.joblib\")\n",
    "print(\"Chunks and index serialized to rag_model.joblib\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "28ce4963",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "import joblib\n",
    "chunks, index = joblib.load(\"rag_model.joblib\")\n",
    "print(\"Chunks and index loaded from rag_model.joblib\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "51a89e77",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "def search(query, k=3):\n",
    "    response = openai.Embedding.create(\n",
    "        model=\"text-embedding-3-small\",\n",
    "        input=query\n",
    "    )\n",
    "    query_vec = np.array([response['data'][0]['embedding']])\n",
    "    scores, indices = index.search(query_vec, k)\n",
    "    return [chunks[i] for i in indices[0]]\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "34315775",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "import os\n",
    "import openai\n",
    "from openai import OpenAI\n",
    "\n",
    "os.environ[\"OPENAI_API_KEY\"] = os.getenv(\"OPENAI_API_KEY\")\n",
    "client = OpenAI()\n",
    "\n",
    "def chat_no_rag(question):\n",
    "    response = client.chat.completions.create(\n",
    "        model=\"gpt-3.5-turbo\",\n",
    "        messages=[\n",
    "            {\"role\": \"user\", \"content\": question}\n",
    "        ],\n",
    "        temperature=0.5,\n",
    "        max_tokens=200,\n",
    "    )\n",
    "    return response.choices[0].message.content\n",
    "\n",
    "def chat_with_rag(question, retrieved_chunks):\n",
    "    context = \"\\n\".join(retrieved_chunks)\n",
    "    prompt = f\"Usa el siguiente contexto para responder la pregunta:\\n\\n{context}\\n\\nPregunta: {question}\"\n",
    "\n",
    "    response = client.chat.completions.create(\n",
    "        model=\"gpt-3.5-turbo\",\n",
    "        messages=[\n",
    "            {\"role\": \"user\", \"content\": prompt}\n",
    "        ],\n",
    "        temperature=0.3,\n",
    "        max_tokens=200,\n",
    "    )\n",
    "    return response.choices[0].message.content\n",
    "\n",
    "def chat_with_rag_enhanced(question, retrieved_chunks):\n",
    "    context = \"\\n\".join(retrieved_chunks)\n",
    "    prompt = (\n",
    "        \"Eres un experto en historia marcial. \"\n",
    "        \"Usa el siguiente contexto histórico para responder con precisión y detalle.\\n\\n\"\n",
    "        f\"Contexto:\\n{context}\\n\\n\"\n",
    "        f\"Pregunta: {question}\\nRespuesta:\"\n",
    "    )\n",
    "\n",
    "    response = client.chat.completions.create(\n",
    "        model=\"gpt-3.5-turbo\",\n",
    "        messages=[\n",
    "            {\"role\": \"user\", \"content\": prompt}\n",
    "        ],\n",
    "        temperature=0.2,\n",
    "        max_tokens=200,\n",
    "    )\n",
    "    return response.choices[0].message.content\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "900dfdfa",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "# Example query\n",
    "query = \"¿Cuál es el origen del JuJutsu en Japón?\"\n",
    "retrieved = search(query)\n",
    "\n",
    "print(\"🔹 Sin RAG:\")\n",
    "print(chat_no_rag(query))\n",
    "\n",
    "print(\"\\n🔹 Con RAG:\")\n",
    "print(chat_with_rag(query, retrieved))\n",
    "\n",
    "print(\"\\n🔹 Con RAG + Prompt mejorado:\")\n",
    "print(chat_with_rag_enhanced(query, retrieved))\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}