Spaces:
Running
on
Zero
Running
on
Zero
File size: 38,519 Bytes
b273838 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 |
import math
import os
# from functools import partial
# from clip_fiqa.inference import get_model, compute_quality
import matplotlib.pyplot as plt
import numpy as np
import torch
from tqdm.auto import tqdm
# from torchmetrics.multimodal import CLIPImageQualityAssessment
import random
# from torch.nn.functional import cosine_similarity
import pyiqa
from util.img_utils import clear_color
from .posterior_mean_variance import get_mean_processor, get_var_processor
def set_seed(seed):
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
torch.cuda.manual_seed_all(seed)
# torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.benchmark = False
__SAMPLER__ = {}
def register_sampler(name: str):
def wrapper(cls):
if __SAMPLER__.get(name, None):
raise NameError(f"Name {name} is already registered!")
__SAMPLER__[name] = cls
return cls
return wrapper
def get_sampler(name: str):
if __SAMPLER__.get(name, None) is None:
raise NameError(f"Name {name} is not defined!")
return __SAMPLER__[name]
def create_sampler(sampler,
steps,
noise_schedule,
model_mean_type,
model_var_type,
dynamic_threshold,
clip_denoised,
rescale_timesteps,
timestep_respacing=""):
sampler = get_sampler(name=sampler)
betas = get_named_beta_schedule(noise_schedule, steps)
if not timestep_respacing:
timestep_respacing = [steps]
return sampler(use_timesteps=space_timesteps(steps, timestep_respacing),
betas=betas,
model_mean_type=model_mean_type,
model_var_type=model_var_type,
dynamic_threshold=dynamic_threshold,
clip_denoised=clip_denoised,
rescale_timesteps=rescale_timesteps)
def compute_psnr(img1, img2):
"""
Computes the Peak Signal-to-Noise Ratio (PSNR) between two images.
The images should have pixel values in the range [-1, 1].
Args:
img1 (torch.Tensor): The first image tensor (e.g., reference image).
Shape: (N, C, H, W) or (C, H, W).
img2 (torch.Tensor): The second image tensor (e.g., generated image).
Shape: same as img1.
Returns:
psnr (float): The computed PSNR value in decibels (dB).
"""
# Ensure the input tensors are in the same shape
assert img1.shape == img2.shape, "Input images must have the same shape"
# Compute Mean Squared Error (MSE)
mse = torch.mean((img1 - img2) ** 2)
# Avoid division by zero in case of identical images
if mse == 0:
return float('inf')
# Maximum possible pixel value difference in the range [-1, 1] is 2
max_pixel_value = 2.0
# Compute PSNR
psnr = 20 * torch.log10(max_pixel_value / torch.sqrt(mse))
return psnr.item()
class GaussianDiffusion:
def __init__(self,
betas,
model_mean_type,
model_var_type,
dynamic_threshold,
clip_denoised,
rescale_timesteps
):
# use float64 for accuracy.
betas = np.array(betas, dtype=np.float64)
self.betas = betas
assert self.betas.ndim == 1, "betas must be 1-D"
assert (0 < self.betas).all() and (self.betas <=1).all(), "betas must be in (0..1]"
self.num_timesteps = int(self.betas.shape[0])
self.rescale_timesteps = rescale_timesteps
alphas = 1.0 - self.betas
self.alphas = alphas
self.alphas_cumprod = np.cumprod(alphas, axis=0)
self.alphas_cumprod_prev = np.append(1.0, self.alphas_cumprod[:-1])
self.alphas_cumprod_next = np.append(self.alphas_cumprod[1:], 0.0)
assert self.alphas_cumprod_prev.shape == (self.num_timesteps,)
# calculations for diffusion q(x_t | x_{t-1}) and others
self.sqrt_alphas_cumprod = np.sqrt(self.alphas_cumprod)
self.sqrt_one_minus_alphas_cumprod = np.sqrt(1.0 - self.alphas_cumprod)
self.log_one_minus_alphas_cumprod = np.log(1.0 - self.alphas_cumprod)
self.sqrt_recip_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod)
self.sqrt_recipm1_alphas_cumprod = np.sqrt(1.0 / self.alphas_cumprod - 1)
# calculations for posterior q(x_{t-1} | x_t, x_0)
self.posterior_variance = (
betas * (1.0 - self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
)
# log calculation clipped because the posterior variance is 0 at the
# beginning of the diffusion chain.
self.posterior_log_variance_clipped = np.log(
np.append(self.posterior_variance[1], self.posterior_variance[1:])
)
self.posterior_mean_coef1 = (
betas * np.sqrt(self.alphas_cumprod_prev) / (1.0 - self.alphas_cumprod)
)
self.posterior_mean_coef2 = (
(1.0 - self.alphas_cumprod_prev)
* np.sqrt(alphas)
/ (1.0 - self.alphas_cumprod)
)
self.mean_processor = get_mean_processor(model_mean_type,
betas=betas,
dynamic_threshold=dynamic_threshold,
clip_denoised=clip_denoised)
self.var_processor = get_var_processor(model_var_type,
betas=betas)
def q_mean_variance(self, x_start, t):
"""
Get the distribution q(x_t | x_0).
:param x_start: the [N x C x ...] tensor of noiseless inputs.
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
:return: A tuple (mean, variance, log_variance), all of x_start's shape.
"""
mean = extract_and_expand(self.sqrt_alphas_cumprod, t, x_start) * x_start
variance = extract_and_expand(1.0 - self.alphas_cumprod, t, x_start)
log_variance = extract_and_expand(self.log_one_minus_alphas_cumprod, t, x_start)
return mean, variance, log_variance
def q_sample(self, x_start, t):
"""
Diffuse the data for a given number of diffusion steps.
In other words, sample from q(x_t | x_0).
:param x_start: the initial data batch.
:param t: the number of diffusion steps (minus 1). Here, 0 means one step.
:param noise: if specified, the split-out normal noise.
:return: A noisy version of x_start.
"""
noise = torch.randn_like(x_start)
assert noise.shape == x_start.shape
coef1 = extract_and_expand(self.sqrt_alphas_cumprod, t, x_start)
coef2 = extract_and_expand(self.sqrt_one_minus_alphas_cumprod, t, x_start)
return coef1 * x_start + coef2 * noise
def q_posterior_mean_variance(self, x_start, x_t, t):
"""
Compute the mean and variance of the diffusion posterior:
q(x_{t-1} | x_t, x_0)
"""
assert x_start.shape == x_t.shape
coef1 = extract_and_expand(self.posterior_mean_coef1, t, x_start)
coef2 = extract_and_expand(self.posterior_mean_coef2, t, x_t)
posterior_mean = coef1 * x_start + coef2 * x_t
posterior_variance = extract_and_expand(self.posterior_variance, t, x_t)
posterior_log_variance_clipped = extract_and_expand(self.posterior_log_variance_clipped, t, x_t)
assert (
posterior_mean.shape[0]
== posterior_variance.shape[0]
== posterior_log_variance_clipped.shape[0]
== x_start.shape[0]
)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
torch.no_grad()
def p_sample_loop_compression(self,
model,
x_start,
ref_img,
record,
save_root,
num_opt_noises,
num_random_noises,
loss_type,
decode_residual_gap,
fname,
eta,
num_best_opt_noises,
num_pursuit_noises,
num_pursuit_coef_bits,
random_opt_mse_noises):
"""
The function used for sampling from noise.
"""
assert num_best_opt_noises + num_random_noises > 0
# loss_fn_vgg = lpips.LPIPS(net='vgg').cuda()
# loss_fn_alex = lpips.LPIPS(net='alex').cuda()
set_seed(100000)
device = x_start.device
img = torch.randn(1 + random_opt_mse_noises, *x_start.shape[1:], device=device)
plt.imsave(os.path.join(save_root, f"progress/img_to_compress.png"), clear_color(ref_img))
best_indices_list = []
x_hat_0_list = []
pbar = tqdm(list(range(self.num_timesteps))[::-1])
num_noises_total = 0
num_steps_total = 0
for idx in pbar:
set_seed(idx)
time = torch.tensor([idx] * img.shape[0], device=device)
if len(x_hat_0_list) >= 2:
x_hat_0_list = x_hat_0_list[-decode_residual_gap:]
x_hat_0_list_tensor = torch.stack(x_hat_0_list, dim=0)
# TODO: think about different probs schedulings
probs = torch.linspace(0, 1, len(x_hat_0_list) - 1, device=device)
probs /= torch.sum(probs)
residual = torch.sum(probs.view(-1, 1) * (x_hat_0_list_tensor[1:] - x_hat_0_list_tensor[:-1]).view(len(x_hat_0_list) - 1, -1), dim=0)
new_noise = torch.randn(num_opt_noises, *img.shape[1:], device=device)
similarity = torch.matmul(new_noise.view(num_opt_noises, -1),
residual.view(-1, 1)).squeeze(1)
sorted_similarity, sorted_indices = torch.sort(similarity, descending=False)
noise = new_noise[sorted_indices][:num_best_opt_noises]
if num_random_noises > 0:
noise = torch.cat((noise, torch.randn(num_random_noises, *img.shape[1:], device=device)), dim=0)
else:
noise = torch.randn(num_best_opt_noises + num_random_noises, *img.shape[1:], device=device)
num_noises_total += noise.shape[0]
num_steps_total += 1
# perceptual_loss_weight = (1 - (idx / len(pbar))) * lpips_loss_mult
out = self.p_sample(x=img,
t=time,
model=model,
noise=noise,
ref=ref_img,
loss_type=loss_type,
random_opt_mse_noises=random_opt_mse_noises,
eta=eta,
num_pursuit_noises=num_pursuit_noises,
num_pursuit_coef_bits=num_pursuit_coef_bits)
best_idx = out['best_idx']
best_indices_list.append(best_idx.cpu().numpy())
# print(best_indices_list, '\n\n', flush=True)
img = out['sample']
x_0_hat = out['pred_xstart']
x_hat_0_list.append(x_0_hat[0].unsqueeze(0))
# chosen_noises_list.append(noise[best_idx])
# pbar.set_postfix({'distance': out['mse']}, refresh=False)
if record:
if idx % 50 == 0:
plt.imsave(os.path.join(save_root, f"progress/x_0_hat_{str(idx).zfill(4)}.png"), clear_color(x_0_hat[0].unsqueeze(0).clip(-1, 1)))
plt.imsave(os.path.join(save_root, f"progress/x_t_{str(idx).zfill(4)}.png"), clear_color(img[0].unsqueeze(0).clip(-1, 1)))
plt.imsave(os.path.join(save_root, f"progress/noise_t_{str(idx).zfill(4)}.png"), clear_color(noise[0].unsqueeze(0).clip(-1, 1)))
plt.imsave(os.path.join(save_root, f"progress/err_t_{str(idx).zfill(4)}.png"), clear_color((ref_img - x_0_hat)[0].unsqueeze(0)))
del noise
# lpips_vgg = loss_fn_vgg(img, ref_img).squeeze().item()
# lpips_alex = loss_fn_alex(img, ref_img).squeeze().item()
plt.imsave(os.path.join(save_root,
f"progress/x_0_hat_final_psnr={compute_psnr(img[0].unsqueeze(0), ref_img)}_bpp={np.log2(num_noises_total / num_steps_total)}.png"),
clear_color(img[0].unsqueeze(0)))
indices_save_folder = os.path.join(save_root, 'best_indices')
os.makedirs(indices_save_folder, exist_ok=True)
np.save(os.path.join(indices_save_folder, os.path.splitext(os.path.basename(fname))[0] + '.bestindices'), np.array(best_indices_list))
return img
@torch.no_grad()
def p_sample_loop_blind_restoration(self,
model,
x_start,
mmse_img,
num_opt_noises,
iqa_metric,
iqa_coef,
eta,
loaded_indices):
assert iqa_metric == 'niqe' or iqa_metric == 'clipiqa+' or iqa_metric == 'topiq_nr-face'
iqa = pyiqa.create_metric(iqa_metric, device=x_start.device)
device = x_start.device
set_seed(100000)
img = torch.randn(2, *x_start.shape[1:], device=device)
pbar = tqdm(list(range(self.num_timesteps))[::-1])
next_idx = np.array([0, 1])
if loaded_indices is not None:
indices = loaded_indices
loaded_indices = torch.cat((loaded_indices, torch.tensor([0], device=device, dtype=loaded_indices.dtype)), dim=0)
else:
indices = []
for i, idx in enumerate(pbar):
set_seed(idx)
noise = torch.randn(num_opt_noises, *img.shape[1:], device=device)
if loaded_indices is None:
time = torch.tensor([idx] * img.shape[0], device=device)
out = self.p_sample(x=img,
t=time,
model=model,
noise=noise,
ref=mmse_img,
loss_type='dot_prod',
optimize_iqa=True,
eta=eta,
iqa=iqa,
iqa_coef=iqa_coef)
img = out['sample']
best_perceptual_idx_cur = out['best_perceptual_idx']
indices.append(next_idx[best_perceptual_idx_cur])
next_idx = out['best_idx']
else:
time = torch.tensor([idx], device=device)
if i == 0:
img = img[loaded_indices[0]].unsqueeze(0)
out = self.p_sample(x=img,
t=time,
model=model,
noise=noise[loaded_indices[i+1]].unsqueeze(0),
ref=img,
loss_type='dot_prod',
optimize_iqa=False,
eta=eta,
iqa='niqe',
iqa_coef=0.0)
img = out['sample']
if type(indices) is list:
indices = torch.tensor(indices).flatten()
return img[0].unsqueeze(0), indices
@torch.no_grad()
def p_sample_loop_linear_restoration(self,
model,
x_start,
ref_img,
linear_operator,
y_n,
num_pursuit_noises,
num_pursuit_coef_bits,
record,
save_root,
num_opt_noises,
fname,
eta):
"""
The function used for sampling from noise.
"""
set_seed(100000)
device = x_start.device
img = torch.randn(1, *x_start.shape[1:], device=device)
pbar = tqdm(list(range(self.num_timesteps))[::-1])
for idx in pbar:
set_seed(idx)
time = torch.tensor([idx] * img.shape[0], device=device)
noise = torch.randn(num_opt_noises, *img.shape[1:], device=device)
# perceptual_loss_weight = (1 - (idx / len(pbar))) * lpips_loss_mult
out = self.p_sample(x=img,
t=time,
model=model,
noise=noise,
ref=ref_img,
loss_type='mse',
eta=eta,
y_n=y_n,
linear_operator=linear_operator,
num_pursuit_noises=num_pursuit_noises,
num_pursuit_coef_bits=num_pursuit_coef_bits,
optimize_iqa=False,
iqa=None,
iqa_coef=None)
x_0_hat = out['pred_xstart']
img = out['sample']
# loss = (((x_0_hat - mmse_img) ** 2).mean()
# - perceptual_quality_coef * clip_iqa((x_0_hat * 0.5 + 0.5).clip(0, 1)))
# pbar.set_postfix({'perceptual_quality': loss[best_perceptual_idx].item()}, refresh=False)
if record:
if idx % 50 == 0:
plt.imsave(os.path.join(save_root, f"progress/x_0_hat_{str(idx).zfill(4)}.png"), clear_color(x_0_hat[0].unsqueeze(0).clip(-1, 1)))
plt.imsave(os.path.join(save_root, f"progress/x_t_{str(idx).zfill(4)}.png"), clear_color(img[0].unsqueeze(0).clip(-1, 1)))
# plt.imsave(os.path.join(save_root,
# f"progress/x_0_hat_final_lpips-vgg={lpips_vgg:.4f}_lpips-alex"
# f"={lpips_alex:.4f}_psnr={compute_psnr(img[0].unsqueeze(0), ref_img)}_bpp={np.log2(num_noises_total / num_steps_total)}.png"),
# clear_color(img[0].unsqueeze(0)))
# indices_save_folder = os.path.join(save_root, 'best_indices')
# os.makedirs(indices_save_folder, exist_ok=True)
# np.save(os.path.join(indices_save_folder, os.path.splitext(os.path.basename(fname))[0] + '.bestindices'), np.array(best_indices_list))
return img
def p_sample(self, model, x, t, noise, ref, loss_type, eta=None):
raise NotImplementedError
def p_mean_variance(self, model, x, t):
model_output = model(x, self._scale_timesteps(t))
# In the case of "learned" variance, model will give twice channels.
if model_output.shape[1] == 2 * x.shape[1]:
model_output, model_var_values = torch.split(model_output, x.shape[1], dim=1)
else:
# The name of variable is wrong.
# This will just provide shape information, and
# will not be used for calculating something important in variance.
model_var_values = model_output
model_mean, pred_xstart = self.mean_processor.get_mean_and_xstart(x, t, model_output)
model_variance, model_log_variance = self.var_processor.get_variance(model_var_values, t)
assert model_mean.shape == model_log_variance.shape == pred_xstart.shape == x.shape
return {'mean': model_mean,
'variance': model_variance,
'log_variance': model_log_variance,
'pred_xstart': pred_xstart}
def _scale_timesteps(self, t):
if self.rescale_timesteps:
return t.float() * (1000.0 / self.num_timesteps)
return t
def space_timesteps(num_timesteps, section_counts):
"""
Create a list of timesteps to use from an original diffusion process,
given the number of timesteps we want to take from equally-sized portions
of the original process.
For example, if there's 300 timesteps and the section counts are [10,15,20]
then the first 100 timesteps are strided to be 10 timesteps, the second 100
are strided to be 15 timesteps, and the final 100 are strided to be 20.
If the stride is a string starting with "ddim", then the fixed striding
from the DDIM paper is used, and only one section is allowed.
:param num_timesteps: the number of diffusion steps in the original
process to divide up.
:param section_counts: either a list of numbers, or a string containing
comma-separated numbers, indicating the step count
per section. As a special case, use "ddimN" where N
is a number of steps to use the striding from the
DDIM paper.
:return: a set of diffusion steps from the original process to use.
"""
if isinstance(section_counts, str):
if section_counts.startswith("ddim"):
desired_count = int(section_counts[len("ddim") :])
for i in range(1, num_timesteps):
if len(range(0, num_timesteps, i)) == desired_count:
return set(range(0, num_timesteps, i))
raise ValueError(
f"cannot create exactly {num_timesteps} steps with an integer stride"
)
section_counts = [int(x) for x in section_counts.split(",")]
elif isinstance(section_counts, int):
section_counts = [section_counts]
size_per = num_timesteps // len(section_counts)
extra = num_timesteps % len(section_counts)
start_idx = 0
all_steps = []
for i, section_count in enumerate(section_counts):
size = size_per + (1 if i < extra else 0)
if size < section_count:
raise ValueError(
f"cannot divide section of {size} steps into {section_count}"
)
if section_count <= 1:
frac_stride = 1
else:
frac_stride = (size - 1) / (section_count - 1)
cur_idx = 0.0
taken_steps = []
for _ in range(section_count):
taken_steps.append(start_idx + round(cur_idx))
cur_idx += frac_stride
all_steps += taken_steps
start_idx += size
return set(all_steps)
class SpacedDiffusion(GaussianDiffusion):
"""
A diffusion process which can skip steps in a base diffusion process.
:param use_timesteps: a collection (sequence or set) of timesteps from the
original diffusion process to retain.
:param kwargs: the kwargs to create the base diffusion process.
"""
def __init__(self, use_timesteps, **kwargs):
self.use_timesteps = set(use_timesteps)
self.timestep_map = []
self.original_num_steps = len(kwargs["betas"])
base_diffusion = GaussianDiffusion(**kwargs) # pylint: disable=missing-kwoa
last_alpha_cumprod = 1.0
new_betas = []
for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod):
if i in self.use_timesteps:
new_betas.append(1 - alpha_cumprod / last_alpha_cumprod)
last_alpha_cumprod = alpha_cumprod
self.timestep_map.append(i)
kwargs["betas"] = np.array(new_betas)
super().__init__(**kwargs)
def p_mean_variance(
self, model, *args, **kwargs
): # pylint: disable=signature-differs
return super().p_mean_variance(self._wrap_model(model), *args, **kwargs)
def training_losses(
self, model, *args, **kwargs
): # pylint: disable=signature-differs
return super().training_losses(self._wrap_model(model), *args, **kwargs)
def condition_mean(self, cond_fn, *args, **kwargs):
return super().condition_mean(self._wrap_model(cond_fn), *args, **kwargs)
def condition_score(self, cond_fn, *args, **kwargs):
return super().condition_score(self._wrap_model(cond_fn), *args, **kwargs)
def _wrap_model(self, model):
if isinstance(model, _WrappedModel):
return model
return _WrappedModel(
model, self.timestep_map, self.rescale_timesteps, self.original_num_steps
)
def _scale_timesteps(self, t):
# Scaling is done by the wrapped model.
return t
class _WrappedModel:
def __init__(self, model, timestep_map, rescale_timesteps, original_num_steps):
self.model = model
self.timestep_map = timestep_map
self.rescale_timesteps = rescale_timesteps
self.original_num_steps = original_num_steps
def __call__(self, x, ts, **kwargs):
map_tensor = torch.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype)
new_ts = map_tensor[ts]
if self.rescale_timesteps:
new_ts = new_ts.float() * (1000.0 / self.original_num_steps)
return self.model(x, new_ts, **kwargs)
@register_sampler(name='ddpm')
class DDPM(SpacedDiffusion):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def p_sample(self, model, x, t, noise, ref, perceptual_loss_weight, loss_type='mse', eta=None):
out = self.p_mean_variance(model, x, t)
pred_xstart = out['pred_xstart']
# if loss_type == 'mse':
# loss = - ((pred_xstart + noise - ref).view(noise.shape[0], -1) ** 2).mean(1)
# elif loss_type == 'mse_alpha':
# loss = - ((pred_xstart + torch.exp(0.5 * out['log_variance']) * noise - ref).view(noise.shape[0], -1) ** 2).mean(1)
if loss_type == 'dot_prod':
loss = torch.matmul(noise.view(noise.shape[0], -1), (ref - pred_xstart).view(pred_xstart.shape[0], -1).transpose(0, 1))
elif loss_type == 'mse':
#TODO: this is what we are doing! the dot product is an approximation of it!
sqrt_recip_alphas_cumprod = extract_and_expand(self.sqrt_recip_alphas_cumprod, t-1 if t[0] > 0 else torch.zeros_like(t), noise)
loss = - ((pred_xstart + sqrt_recip_alphas_cumprod * torch.exp(0.5 * out['log_variance']) * noise - ref).view(noise.shape[0], -1) ** 2).mean(1)
elif loss_type == 'l1':
sqrt_recip_alphas_cumprod = extract_and_expand(self.sqrt_recip_alphas_cumprod, t-1 if t[0] > 0 else torch.zeros_like(t), noise)
loss = - torch.abs(pred_xstart + sqrt_recip_alphas_cumprod * torch.exp(0.5 * out['log_variance']) * noise - ref).view(noise.shape[0], -1).mean(1)
# elif loss_type == 'ddpm_inversion':
# sqrt_alphas_cumprod = extract_and_expand(self.sqrt_alphas_cumprod, t-1 if t[0] > 0 else torch.zeros_like(t), ref)
# sqrt_one_minus_alphas_cumprod = extract_and_expand(self.sqrt_one_minus_alphas_cumprod, t-1 if t[0] > 0 else torch.zeros_like(t), ref)
#
# forward_noise = torch.randn_like(ref)
# loss = torch.matmul(noise.view(noise.shape[0], -1),
# (sqrt_alphas_cumprod * ref + sqrt_one_minus_alphas_cumprod * forward_noise - out['mean']).view(pred_xstart.shape[0], -1).transpose(0, 1))
#
#
else:
raise NotImplementedError()
best_idx = torch.argmax(loss)
samples = out['mean'] + torch.exp(0.5 * out['log_variance']) * noise[best_idx].unsqueeze(0)
return {'sample': samples if t[0] > 0 else pred_xstart,
'pred_xstart': pred_xstart,
'mse': loss[best_idx].item(),
'best_idx': best_idx}
@register_sampler(name='ddim')
class DDIM(SpacedDiffusion):
@torch.no_grad()
def p_sample(self, model, x, t, noise, ref, loss_type='mse', eta=0.0, iqa=None, iqa_coef=1.0,
optimize_iqa=False, linear_operator=None, y_n=None, random_opt_mse_noises=0,
num_pursuit_noises=1, num_pursuit_coef_bits=1,
cond_fn=None,
cls=None
):
out = self.p_mean_variance(model, x, t)
pred_xstart = out['pred_xstart']
best_perceptual_idx = None
if optimize_iqa:
assert not random_opt_mse_noises
coef_sign = 1 if iqa.lower_better else -1
if iqa.metric_name == 'topiq_nr-face':
assert not iqa.lower_better
# topiq_nr-face doesn't support a batch size larger than 1.
scores = []
for elem in pred_xstart:
try:
scores.append(iqa((elem.unsqueeze(0) * 0.5 + 0.5).clip(0, 1)).squeeze().view(1))
except AssertionError:
# no face detected...
scores.append(torch.zeros(1, device=x.device))
scores = torch.stack(scores, dim=0).squeeze()
loss = (((ref - pred_xstart) ** 2).view(pred_xstart.shape[0], -1).mean(1) + coef_sign * iqa_coef * scores)
else:
loss = (((ref - pred_xstart) ** 2).view(pred_xstart.shape[0], -1).mean(1) + coef_sign * iqa_coef * iqa((pred_xstart * 0.5 + 0.5).clip(0, 1)).squeeze())
best_perceptual_idx = torch.argmin(loss)
out['pred_xstart'] = out['pred_xstart'][best_perceptual_idx].unsqueeze(0)
pred_xstart = pred_xstart[best_perceptual_idx].unsqueeze(0)
t = t[best_perceptual_idx]
x = x[best_perceptual_idx].unsqueeze(0)
elif random_opt_mse_noises > 0:
loss = (((ref - pred_xstart) ** 2).view(pred_xstart.shape[0], -1).mean(1))
best_mse_idx = torch.argmin(loss)
out['pred_xstart'] = out['pred_xstart'][best_mse_idx].unsqueeze(0)
pred_xstart = pred_xstart[best_mse_idx].unsqueeze(0)
t = t[best_mse_idx]
x = x[best_mse_idx].unsqueeze(0)
eps = self.predict_eps_from_x_start(x, t, out['pred_xstart'])
alpha_bar = extract_and_expand(self.alphas_cumprod, t, x)
alpha_bar_prev = extract_and_expand(self.alphas_cumprod_prev, t, x)
sigma = (
eta
* torch.sqrt((1 - alpha_bar_prev) / (1 - alpha_bar))
* torch.sqrt(1 - alpha_bar / alpha_bar_prev)
)
mean_pred = (
out["pred_xstart"] * torch.sqrt(alpha_bar_prev)
+ torch.sqrt(1 - alpha_bar_prev - sigma ** 2) * eps
)
sample = mean_pred
if y_n is not None:
assert linear_operator is not None
y_n = ref if y_n is None else y_n
if not optimize_iqa and random_opt_mse_noises <= 0 and cond_fn is None:
if loss_type == 'dot_prod':
if linear_operator is None:
compute_loss = lambda noise_cur: torch.matmul(noise_cur.view(noise_cur.shape[0], -1), (ref - pred_xstart).view(pred_xstart.shape[0], -1).transpose(0, 1))
else:
compute_loss = lambda noise_cur: torch.matmul(linear_operator.forward(noise_cur).reshape(noise_cur.shape[0], -1), (y_n - linear_operator.forward(pred_xstart)).reshape(pred_xstart.shape[0], -1).transpose(0, 1))
elif loss_type == 'mse':
if linear_operator is None:
compute_loss = lambda noise_cur: - (((sigma / torch.sqrt(alpha_bar_prev)) * noise_cur + pred_xstart - y_n) ** 2).mean((1, 2, 3))
else:
compute_loss = lambda noise_cur: - (((sigma / torch.sqrt(alpha_bar_prev))[:, :, :y_n.shape[2], :y_n.shape[3]] * linear_operator.forward(noise_cur) + linear_operator.forward(pred_xstart) - y_n) ** 2).mean((1, 2, 3))
else:
raise NotImplementedError()
# print("getting loss")
loss = compute_loss(noise)
best_idx = torch.argmax(loss)
best_noise = noise[best_idx]
best_loss = loss[best_idx]
if num_pursuit_noises > 1:
pursuit_coefs = np.linspace(0, 1, 2 ** num_pursuit_coef_bits + 1)[1:]
for _ in range(num_pursuit_noises - 1):
next_best_noise = best_noise
for pursuit_coef in pursuit_coefs:
new_noise = best_noise.unsqueeze(0) * np.sqrt(pursuit_coef) + noise * np.sqrt(1 - pursuit_coef)
new_noise /= new_noise.view(noise.shape[0], -1).std(1).view(noise.shape[0], 1, 1, 1)
cur_loss = compute_loss(new_noise)
cur_best_idx = torch.argmax(cur_loss)
cur_best_loss = cur_loss[cur_best_idx]
if cur_best_loss > best_loss:
next_best_noise = new_noise[cur_best_idx]
best_loss = cur_best_loss
best_noise = next_best_noise
if t != 0:
sample += sigma * best_noise.unsqueeze(0)
return {'sample': sample if t[0] > 0 else pred_xstart,
'pred_xstart': pred_xstart,
'mse': loss[best_idx].item(),
'best_idx': best_idx}
else:
if random_opt_mse_noises > 0 and not optimize_iqa:
num_rand_indices = random_opt_mse_noises
elif optimize_iqa and random_opt_mse_noises <= 0:
num_rand_indices = 1
elif cond_fn is not None:
num_rand_indices = 2
else:
raise NotImplementedError()
loss = torch.matmul(noise.view(noise.shape[0], -1),
(ref - pred_xstart).view(pred_xstart.shape[0], -1).transpose(0, 1)).squeeze()
best_idx = torch.argmax(loss).reshape(1)
rand_idx = torch.randint(0, noise.shape[0], size=(num_rand_indices, ), device=best_idx.device).reshape(num_rand_indices)
best_and_rand_idx = torch.cat((best_idx, rand_idx), dim=0).flatten()
if t != 0:
sample = sample + sigma * noise[best_and_rand_idx]
return {'sample': sample,
'pred_xstart': pred_xstart,
'best_idx': best_and_rand_idx,
'best_perceptual_idx': best_perceptual_idx}
def predict_eps_from_x_start(self, x_t, t, pred_xstart):
coef1 = extract_and_expand(self.sqrt_recip_alphas_cumprod, t, x_t)
coef2 = extract_and_expand(self.sqrt_recipm1_alphas_cumprod, t, x_t)
return (coef1 * x_t - pred_xstart) / coef2
# =================
# Helper functions
# =================
def get_named_beta_schedule(schedule_name, num_diffusion_timesteps):
"""
Get a pre-defined beta schedule for the given name.
The beta schedule library consists of beta schedules which remain similar
in the limit of num_diffusion_timesteps.
Beta schedules may be added, but should not be removed or changed once
they are committed to maintain backwards compatibility.
"""
if schedule_name == "linear":
# Linear schedule from Ho et al, extended to work for any number of
# diffusion steps.
scale = 1000 / num_diffusion_timesteps
beta_start = scale * 0.0001
beta_end = scale * 0.02
return np.linspace(
beta_start, beta_end, num_diffusion_timesteps, dtype=np.float64
)
elif schedule_name == "cosine":
return betas_for_alpha_bar(
num_diffusion_timesteps,
lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
)
else:
raise NotImplementedError(f"unknown beta schedule: {schedule_name}")
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
"""
Create a beta schedule that discretizes the given alpha_t_bar function,
which defines the cumulative product of (1-beta) over time from t = [0,1].
:param num_diffusion_timesteps: the number of betas to produce.
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
produces the cumulative product of (1-beta) up to that
part of the diffusion process.
:param max_beta: the maximum beta to use; use values lower than 1 to
prevent singularities.
"""
betas = []
for i in range(num_diffusion_timesteps):
t1 = i / num_diffusion_timesteps
t2 = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
return np.array(betas)
# ================
# Helper function
# ================
def extract_and_expand(array, time, target):
array = torch.from_numpy(array).to(target.device)[time].float()
while array.ndim < target.ndim:
array = array.unsqueeze(-1)
return array.expand_as(target)
def expand_as(array, target):
if isinstance(array, np.ndarray):
array = torch.from_numpy(array)
elif isinstance(array, np.float):
array = torch.tensor([array])
while array.ndim < target.ndim:
array = array.unsqueeze(-1)
return array.expand_as(target).to(target.device)
def _extract_into_tensor(arr, timesteps, broadcast_shape):
"""
Extract values from a 1-D numpy array for a batch of indices.
:param arr: the 1-D numpy array.
:param timesteps: a tensor of indices into the array to extract.
:param broadcast_shape: a larger shape of K dimensions with the batch
dimension equal to the length of timesteps.
:return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
"""
res = torch.from_numpy(arr).to(device=timesteps.device)[timesteps].float()
while len(res.shape) < len(broadcast_shape):
res = res[..., None]
return res.expand(broadcast_shape)
|