File size: 1,759 Bytes
b273838
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import gradio as gr
import numpy as np
import spaces
import torch
import torchvision

from latent_utils import compress
from util.file import generate_binary_file, load_numpy_from_binary_bitwise
from util.img_utils import resize_and_crop


@torch.no_grad()
@spaces.GPU(duration=80)
def main(img_to_compress, T, K, model_type='512x512', bitstream=None, avail_models=None,
         progress=gr.Progress(track_tqdm=True)):
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    indices = load_numpy_from_binary_bitwise(bitstream, K, T, model_type, T - 1)
    if indices is not None:
        indices = indices.to(device)
    if indices is None:
        img_to_compress = resize_and_crop(img_to_compress, int(model_type.split('x')[0]))
        img_to_compress = (torchvision.transforms.ToTensor()(img_to_compress) * 2) - 1
        img_to_compress = img_to_compress.unsqueeze(0).to(device)
    else:
        img_to_compress = None
    print(T, K, model_type)
    # model, _ = load_model(img_size_to_id[img_size], T, device, float16=True, compile=False)
    model = avail_models[model_type].to(device)

    model.device = device
    model.model.to(device=device)

    model.model.scheduler.device = device
    # model.model.scheduler.scheduler = model.model.scheduler.scheduler.to(device)

    model.set_timesteps(T, device=device)
    model.num_timesteps = T
    with torch.no_grad():
        x, indices = compress(model, img_to_compress, K, indices, device=device)
    x = (x / 2 + 0.5).clamp(0, 1)
    x = x.detach().cpu().squeeze().numpy()
    x = np.transpose(x, (1, 2, 0))
    torch.cuda.empty_cache()
    indices = generate_binary_file(indices.numpy(), K, T, model_type)
    if bitstream is None:
        return x, indices
    return x