Spaces:
Sleeping
Sleeping
File size: 4,145 Bytes
b5a5cbc 3bea6ba b5a5cbc 3bea6ba b5a5cbc a80914c e045ff9 a80914c 3bea6ba 6442ed7 e045ff9 a80914c cc37cda 315eb56 e045ff9 315eb56 18a078c a80914c a524ff7 cc37cda 963ac87 cc37cda a80914c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 |
import gradio as gr
import numpy as np
import tensorflow as tf
from PIL import Image
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
import matplotlib.pyplot as plt
from matplotlib import gridspec
feature_extractor = SegformerFeatureExtractor.from_pretrained(
"nvidia/segformer-b0-finetuned-cityscapes-1024-1024"
)
model = TFSegformerForSemanticSegmentation.from_pretrained(
"nvidia/segformer-b0-finetuned-cityscapes-1024-1024"
)
def ade_palette():
"""ADE20K palette that maps each class to RGB values."""
return [
[255, 0, 0],
[255, 187, 0],
[255, 228, 0],
[29, 219, 22],
[178, 204, 255],
[1, 0, 255],
[165, 102, 255],
[217, 65, 197],
[116, 116, 116],
[204, 114, 61],
[206, 242, 121],
[61, 183, 204],
[94, 94, 94],
[196, 183, 59],
[246, 246, 246],
[209, 178, 255],
[0, 87, 102],
[153, 0, 76],
[47, 157, 39]
]
labels_list = []
with open(r'labels.txt', 'r') as fp:
for line in fp:
labels_list.append(line[:-1])
colormap = np.asarray(ade_palette())
def label_to_color_image(label):
if label.ndim != 2:
raise ValueError("Expect 2-D input label")
if np.max(label) >= len(colormap):
raise ValueError("label value too large.")
return colormap[label]
def draw_plot(pred_img, seg):
fig = plt.figure(figsize=(20, 15))
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
plt.subplot(grid_spec[0])
plt.imshow(pred_img)
plt.axis('off')
LABEL_NAMES = np.asarray(labels_list)
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
unique_labels = np.unique(seg.numpy().astype("uint8"))
ax = plt.subplot(grid_spec[1])
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
ax.yaxis.tick_right()
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
plt.xticks([], [])
ax.tick_params(width=0.0, labelsize=25)
return fig
def sepia(input_img):
input_img = Image.fromarray(input_img)
inputs = feature_extractor(images=input_img, return_tensors="tf")
outputs = model(**inputs)
logits = outputs.logits
logits = tf.transpose(logits, [0, 2, 3, 1])
logits = tf.image.resize(logits, input_img.size[::-1])
seg = tf.math.argmax(logits, axis=-1)[0]
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8)
for label, color in enumerate(colormap):
color_seg[seg.numpy() == label, :] = color
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
pred_img = pred_img.astype(np.uint8)
fig = draw_plot(pred_img, seg)
# ๊ฐ ๋ฌผ์ฒด์ ๋ํ ์์ธก ํด๋์ค์ ํ๋ฅ ์ป๊ธฐ
unique_labels = np.unique(seg.numpy().astype("uint8"))
class_probabilities = {}
for label in unique_labels:
mask = (seg.numpy() == label)
class_name = labels_list[label]
class_prob = tf.nn.softmax(logits.numpy()[0][:, :, label]) # softmax ์ ์ฉ
class_prob = np.mean(class_prob[mask])
class_probabilities[class_name] = class_prob * 100 # ๋ฐฑ๋ถ์จ๋ก ๋ณํ
# Gradio Interface์ ์ถ๋ ฅํ ๋ฌธ์์ด ์์ฑ
output_text = "Predicted class probabilities:\n"
for class_name, prob in class_probabilities.items():
output_text += f"{class_name}: {prob:.2f}%\n"
# ์ ํ์ฑ์ด ๊ฐ์ฅ ๋์ ๋ฌผ์ฒด ์ ๋ณด ์ถ๋ ฅ
max_prob_class = max(class_probabilities, key=class_probabilities.get)
max_prob_value = class_probabilities[max_prob_class]
output_text += f"\nPredicted class with highest probability: {max_prob_class} \n Probability: {max_prob_value:.4f}%"
return fig, output_text
demo = gr.Interface(fn=sepia,
inputs=gr.Image(shape=(400, 600)),
outputs=['plot', 'text'],
examples=["citiscapes-1.jpeg", "citiscapes-2.jpeg", "citiscapes-3.jpeg", "citiscapes-4.jpeg"],
allow_flagging='never')
demo.launch()
|