Spaces:
Runtime error
Runtime error
Commit
·
a08f593
1
Parent(s):
02fe1e4
Upload 4 files
Browse files- app.txt +110 -0
- config (1).txt +110 -0
- labels (2).txt +19 -0
- requirements (2).txt +6 -0
app.txt
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from matplotlib import gridspec
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import numpy as np
|
6 |
+
from PIL import Image
|
7 |
+
import tensorflow as tf
|
8 |
+
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
|
9 |
+
|
10 |
+
feature_extractor = SegformerFeatureExtractor.from_pretrained(
|
11 |
+
"nvidia/segformer-b0-finetuned-cityscapes-1024-1024"
|
12 |
+
)
|
13 |
+
model = TFSegformerForSemanticSegmentation.from_pretrained(
|
14 |
+
"nvidia/segformer-b0-finetuned-cityscapes-1024-1024"
|
15 |
+
)
|
16 |
+
|
17 |
+
def ade_palette():
|
18 |
+
"""ADE20K palette that maps each class to RGB values."""
|
19 |
+
return [
|
20 |
+
[255, 0, 0],
|
21 |
+
[255, 187, 0],
|
22 |
+
[255, 228, 0],
|
23 |
+
[29, 219, 22],
|
24 |
+
[178, 204, 255],
|
25 |
+
[1, 0, 255],
|
26 |
+
[165, 102, 255],
|
27 |
+
[217, 65, 197],
|
28 |
+
[116, 116, 116],
|
29 |
+
[204, 114, 61],
|
30 |
+
[206, 242, 121],
|
31 |
+
[61, 183, 204],
|
32 |
+
[94, 94, 94],
|
33 |
+
[196, 183, 59],
|
34 |
+
[246, 246, 246],
|
35 |
+
[209, 178, 255],
|
36 |
+
[0, 87, 102],
|
37 |
+
[153, 0, 76]
|
38 |
+
]
|
39 |
+
|
40 |
+
labels_list = []
|
41 |
+
|
42 |
+
with open(r'labels.txt', 'r') as fp:
|
43 |
+
for line in fp:
|
44 |
+
labels_list.append(line[:-1])
|
45 |
+
|
46 |
+
colormap = np.asarray(ade_palette())
|
47 |
+
|
48 |
+
def label_to_color_image(label):
|
49 |
+
if label.ndim != 2:
|
50 |
+
raise ValueError("Expect 2-D input label")
|
51 |
+
|
52 |
+
if np.max(label) >= len(colormap):
|
53 |
+
raise ValueError("label value too large.")
|
54 |
+
return colormap[label]
|
55 |
+
|
56 |
+
def draw_plot(pred_img, seg):
|
57 |
+
fig = plt.figure(figsize=(20, 15))
|
58 |
+
|
59 |
+
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
|
60 |
+
|
61 |
+
plt.subplot(grid_spec[0])
|
62 |
+
plt.imshow(pred_img)
|
63 |
+
plt.axis('off')
|
64 |
+
LABEL_NAMES = np.asarray(labels_list)
|
65 |
+
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
|
66 |
+
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
|
67 |
+
|
68 |
+
unique_labels = np.unique(seg.numpy().astype("uint8"))
|
69 |
+
ax = plt.subplot(grid_spec[1])
|
70 |
+
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
|
71 |
+
ax.yaxis.tick_right()
|
72 |
+
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
|
73 |
+
plt.xticks([], [])
|
74 |
+
ax.tick_params(width=0.0, labelsize=25)
|
75 |
+
return fig
|
76 |
+
|
77 |
+
def sepia(input_img):
|
78 |
+
input_img = Image.fromarray(input_img)
|
79 |
+
|
80 |
+
inputs = feature_extractor(images=input_img, return_tensors="tf")
|
81 |
+
outputs = model(**inputs)
|
82 |
+
logits = outputs.logits
|
83 |
+
|
84 |
+
logits = tf.transpose(logits, [0, 2, 3, 1])
|
85 |
+
logits = tf.image.resize(
|
86 |
+
logits, input_img.size[::-1]
|
87 |
+
) # We reverse the shape of `image` because `image.size` returns width and height.
|
88 |
+
seg = tf.math.argmax(logits, axis=-1)[0]
|
89 |
+
|
90 |
+
color_seg = np.zeros(
|
91 |
+
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
|
92 |
+
) # height, width, 3
|
93 |
+
for label, color in enumerate(colormap):
|
94 |
+
color_seg[seg.numpy() == label, :] = color
|
95 |
+
|
96 |
+
# Show image + mask
|
97 |
+
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
|
98 |
+
pred_img = pred_img.astype(np.uint8)
|
99 |
+
|
100 |
+
fig = draw_plot(pred_img, seg)
|
101 |
+
return fig
|
102 |
+
|
103 |
+
demo = gr.Interface(fn=sepia,
|
104 |
+
inputs=gr.Image(shape=(400, 600)),
|
105 |
+
outputs=['plot'],
|
106 |
+
examples=["citiscpae-1.jpg", "citiscape-2.jpg"],
|
107 |
+
allow_flagging='never')
|
108 |
+
|
109 |
+
|
110 |
+
demo.launch()
|
config (1).txt
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"SegformerForSemanticSegmentation"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.0,
|
6 |
+
"classifier_dropout_prob": 0.1,
|
7 |
+
"decoder_hidden_size": 256,
|
8 |
+
"depths": [
|
9 |
+
2,
|
10 |
+
2,
|
11 |
+
2,
|
12 |
+
2
|
13 |
+
],
|
14 |
+
"downsampling_rates": [
|
15 |
+
1,
|
16 |
+
4,
|
17 |
+
8,
|
18 |
+
16
|
19 |
+
],
|
20 |
+
"drop_path_rate": 0.1,
|
21 |
+
"hidden_act": "gelu",
|
22 |
+
"hidden_dropout_prob": 0.0,
|
23 |
+
"hidden_sizes": [
|
24 |
+
32,
|
25 |
+
64,
|
26 |
+
160,
|
27 |
+
256
|
28 |
+
],
|
29 |
+
"id2label": {
|
30 |
+
"0": "road",
|
31 |
+
"1": "sidewalk",
|
32 |
+
"2": "building",
|
33 |
+
"3": "wall",
|
34 |
+
"4": "fence",
|
35 |
+
"5": "pole",
|
36 |
+
"6": "traffic light",
|
37 |
+
"7": "traffic sign",
|
38 |
+
"8": "vegetation",
|
39 |
+
"9": "terrain",
|
40 |
+
"10": "sky",
|
41 |
+
"11": "person",
|
42 |
+
"12": "rider",
|
43 |
+
"13": "car",
|
44 |
+
"14": "truck",
|
45 |
+
"15": "bus",
|
46 |
+
"16": "train",
|
47 |
+
"17": "motorcycle",
|
48 |
+
"18": "bicycle"
|
49 |
+
},
|
50 |
+
"image_size": 224,
|
51 |
+
"initializer_range": 0.02,
|
52 |
+
"label2id": {
|
53 |
+
"bicycle": 18,
|
54 |
+
"building": 2,
|
55 |
+
"bus": 15,
|
56 |
+
"car": 13,
|
57 |
+
"fence": 4,
|
58 |
+
"motorcycle": 17,
|
59 |
+
"person": 11,
|
60 |
+
"pole": 5,
|
61 |
+
"rider": 12,
|
62 |
+
"road": 0,
|
63 |
+
"sidewalk": 1,
|
64 |
+
"sky": 10,
|
65 |
+
"terrain": 9,
|
66 |
+
"traffic light": 6,
|
67 |
+
"traffic sign": 7,
|
68 |
+
"train": 16,
|
69 |
+
"truck": 14,
|
70 |
+
"vegetation": 8,
|
71 |
+
"wall": 3
|
72 |
+
},
|
73 |
+
"layer_norm_eps": 1e-06,
|
74 |
+
"mlp_ratios": [
|
75 |
+
4,
|
76 |
+
4,
|
77 |
+
4,
|
78 |
+
4
|
79 |
+
],
|
80 |
+
"model_type": "segformer",
|
81 |
+
"num_attention_heads": [
|
82 |
+
1,
|
83 |
+
2,
|
84 |
+
5,
|
85 |
+
8
|
86 |
+
],
|
87 |
+
"num_channels": 3,
|
88 |
+
"num_encoder_blocks": 4,
|
89 |
+
"patch_sizes": [
|
90 |
+
7,
|
91 |
+
3,
|
92 |
+
3,
|
93 |
+
3
|
94 |
+
],
|
95 |
+
"reshape_last_stage": true,
|
96 |
+
"sr_ratios": [
|
97 |
+
8,
|
98 |
+
4,
|
99 |
+
2,
|
100 |
+
1
|
101 |
+
],
|
102 |
+
"strides": [
|
103 |
+
4,
|
104 |
+
2,
|
105 |
+
2,
|
106 |
+
2
|
107 |
+
],
|
108 |
+
"torch_dtype": "float32",
|
109 |
+
"transformers_version": "4.12.0.dev0"
|
110 |
+
}
|
labels (2).txt
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
road
|
2 |
+
sidewalk
|
3 |
+
building
|
4 |
+
wall
|
5 |
+
fence
|
6 |
+
pole
|
7 |
+
traffic light
|
8 |
+
traffic sign
|
9 |
+
vegetation
|
10 |
+
terrain
|
11 |
+
sky
|
12 |
+
person
|
13 |
+
rider
|
14 |
+
car
|
15 |
+
truck
|
16 |
+
bus
|
17 |
+
train
|
18 |
+
motorcycle
|
19 |
+
bicycle
|
requirements (2).txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
tensorflow
|
4 |
+
numpy
|
5 |
+
Image
|
6 |
+
matplotlib
|