DDingcheol commited on
Commit
a08f593
·
1 Parent(s): 02fe1e4

Upload 4 files

Browse files
Files changed (4) hide show
  1. app.txt +110 -0
  2. config (1).txt +110 -0
  3. labels (2).txt +19 -0
  4. requirements (2).txt +6 -0
app.txt ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ from matplotlib import gridspec
4
+ import matplotlib.pyplot as plt
5
+ import numpy as np
6
+ from PIL import Image
7
+ import tensorflow as tf
8
+ from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
9
+
10
+ feature_extractor = SegformerFeatureExtractor.from_pretrained(
11
+ "nvidia/segformer-b0-finetuned-cityscapes-1024-1024"
12
+ )
13
+ model = TFSegformerForSemanticSegmentation.from_pretrained(
14
+ "nvidia/segformer-b0-finetuned-cityscapes-1024-1024"
15
+ )
16
+
17
+ def ade_palette():
18
+ """ADE20K palette that maps each class to RGB values."""
19
+ return [
20
+ [255, 0, 0],
21
+ [255, 187, 0],
22
+ [255, 228, 0],
23
+ [29, 219, 22],
24
+ [178, 204, 255],
25
+ [1, 0, 255],
26
+ [165, 102, 255],
27
+ [217, 65, 197],
28
+ [116, 116, 116],
29
+ [204, 114, 61],
30
+ [206, 242, 121],
31
+ [61, 183, 204],
32
+ [94, 94, 94],
33
+ [196, 183, 59],
34
+ [246, 246, 246],
35
+ [209, 178, 255],
36
+ [0, 87, 102],
37
+ [153, 0, 76]
38
+ ]
39
+
40
+ labels_list = []
41
+
42
+ with open(r'labels.txt', 'r') as fp:
43
+ for line in fp:
44
+ labels_list.append(line[:-1])
45
+
46
+ colormap = np.asarray(ade_palette())
47
+
48
+ def label_to_color_image(label):
49
+ if label.ndim != 2:
50
+ raise ValueError("Expect 2-D input label")
51
+
52
+ if np.max(label) >= len(colormap):
53
+ raise ValueError("label value too large.")
54
+ return colormap[label]
55
+
56
+ def draw_plot(pred_img, seg):
57
+ fig = plt.figure(figsize=(20, 15))
58
+
59
+ grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
60
+
61
+ plt.subplot(grid_spec[0])
62
+ plt.imshow(pred_img)
63
+ plt.axis('off')
64
+ LABEL_NAMES = np.asarray(labels_list)
65
+ FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
66
+ FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
67
+
68
+ unique_labels = np.unique(seg.numpy().astype("uint8"))
69
+ ax = plt.subplot(grid_spec[1])
70
+ plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
71
+ ax.yaxis.tick_right()
72
+ plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
73
+ plt.xticks([], [])
74
+ ax.tick_params(width=0.0, labelsize=25)
75
+ return fig
76
+
77
+ def sepia(input_img):
78
+ input_img = Image.fromarray(input_img)
79
+
80
+ inputs = feature_extractor(images=input_img, return_tensors="tf")
81
+ outputs = model(**inputs)
82
+ logits = outputs.logits
83
+
84
+ logits = tf.transpose(logits, [0, 2, 3, 1])
85
+ logits = tf.image.resize(
86
+ logits, input_img.size[::-1]
87
+ ) # We reverse the shape of `image` because `image.size` returns width and height.
88
+ seg = tf.math.argmax(logits, axis=-1)[0]
89
+
90
+ color_seg = np.zeros(
91
+ (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
92
+ ) # height, width, 3
93
+ for label, color in enumerate(colormap):
94
+ color_seg[seg.numpy() == label, :] = color
95
+
96
+ # Show image + mask
97
+ pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
98
+ pred_img = pred_img.astype(np.uint8)
99
+
100
+ fig = draw_plot(pred_img, seg)
101
+ return fig
102
+
103
+ demo = gr.Interface(fn=sepia,
104
+ inputs=gr.Image(shape=(400, 600)),
105
+ outputs=['plot'],
106
+ examples=["citiscpae-1.jpg", "citiscape-2.jpg"],
107
+ allow_flagging='never')
108
+
109
+
110
+ demo.launch()
config (1).txt ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "SegformerForSemanticSegmentation"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.0,
6
+ "classifier_dropout_prob": 0.1,
7
+ "decoder_hidden_size": 256,
8
+ "depths": [
9
+ 2,
10
+ 2,
11
+ 2,
12
+ 2
13
+ ],
14
+ "downsampling_rates": [
15
+ 1,
16
+ 4,
17
+ 8,
18
+ 16
19
+ ],
20
+ "drop_path_rate": 0.1,
21
+ "hidden_act": "gelu",
22
+ "hidden_dropout_prob": 0.0,
23
+ "hidden_sizes": [
24
+ 32,
25
+ 64,
26
+ 160,
27
+ 256
28
+ ],
29
+ "id2label": {
30
+ "0": "road",
31
+ "1": "sidewalk",
32
+ "2": "building",
33
+ "3": "wall",
34
+ "4": "fence",
35
+ "5": "pole",
36
+ "6": "traffic light",
37
+ "7": "traffic sign",
38
+ "8": "vegetation",
39
+ "9": "terrain",
40
+ "10": "sky",
41
+ "11": "person",
42
+ "12": "rider",
43
+ "13": "car",
44
+ "14": "truck",
45
+ "15": "bus",
46
+ "16": "train",
47
+ "17": "motorcycle",
48
+ "18": "bicycle"
49
+ },
50
+ "image_size": 224,
51
+ "initializer_range": 0.02,
52
+ "label2id": {
53
+ "bicycle": 18,
54
+ "building": 2,
55
+ "bus": 15,
56
+ "car": 13,
57
+ "fence": 4,
58
+ "motorcycle": 17,
59
+ "person": 11,
60
+ "pole": 5,
61
+ "rider": 12,
62
+ "road": 0,
63
+ "sidewalk": 1,
64
+ "sky": 10,
65
+ "terrain": 9,
66
+ "traffic light": 6,
67
+ "traffic sign": 7,
68
+ "train": 16,
69
+ "truck": 14,
70
+ "vegetation": 8,
71
+ "wall": 3
72
+ },
73
+ "layer_norm_eps": 1e-06,
74
+ "mlp_ratios": [
75
+ 4,
76
+ 4,
77
+ 4,
78
+ 4
79
+ ],
80
+ "model_type": "segformer",
81
+ "num_attention_heads": [
82
+ 1,
83
+ 2,
84
+ 5,
85
+ 8
86
+ ],
87
+ "num_channels": 3,
88
+ "num_encoder_blocks": 4,
89
+ "patch_sizes": [
90
+ 7,
91
+ 3,
92
+ 3,
93
+ 3
94
+ ],
95
+ "reshape_last_stage": true,
96
+ "sr_ratios": [
97
+ 8,
98
+ 4,
99
+ 2,
100
+ 1
101
+ ],
102
+ "strides": [
103
+ 4,
104
+ 2,
105
+ 2,
106
+ 2
107
+ ],
108
+ "torch_dtype": "float32",
109
+ "transformers_version": "4.12.0.dev0"
110
+ }
labels (2).txt ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ road
2
+ sidewalk
3
+ building
4
+ wall
5
+ fence
6
+ pole
7
+ traffic light
8
+ traffic sign
9
+ vegetation
10
+ terrain
11
+ sky
12
+ person
13
+ rider
14
+ car
15
+ truck
16
+ bus
17
+ train
18
+ motorcycle
19
+ bicycle
requirements (2).txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ torch
2
+ transformers
3
+ tensorflow
4
+ numpy
5
+ Image
6
+ matplotlib