Spaces:
Runtime error
Runtime error
Commit
ยท
a775df9
1
Parent(s):
5466d27
Upload app.py.py
Browse files
app.py.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Untitled35.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1o8BEsLXWGF91Q1MOvzj5ZRaEHgUp-kOM
|
8 |
+
|
9 |
+
# 0. ํ์ํ ๋ชจ๋ ๋ค์ด๋ก๋ ๋ฐ ๋ถ๋ฌ์ค๊ธฐ
|
10 |
+
"""
|
11 |
+
|
12 |
+
!pip install datasets
|
13 |
+
!pip install huggingface_hub
|
14 |
+
!python -c "from huggingface_hub.hf_api import HfFolder; HfFolder.save_token('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')"
|
15 |
+
!pip install accelerate>=0.20.1
|
16 |
+
!pip install accelerate -U
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from transformers import BertTokenizerFast, BertForQuestionAnswering, Trainer, TrainingArguments
|
20 |
+
from datasets import load_dataset
|
21 |
+
from collections import defaultdict
|
22 |
+
|
23 |
+
"""# 1. ๋ฐ์ดํฐ ๊ฐ์ ธ์ค๊ธฐ"""
|
24 |
+
|
25 |
+
dataset_load = load_dataset('Multimodal-Fatima/OK-VQA_train') # Multimodal-Fatima/OK-VQA_train ๋ถ๋ฌ์ค๊ธฐ
|
26 |
+
Dataset = dataset_load['train'].select(range(300)) # ๋ฐ์ดํฐ 200~300๊ฐ ๋ถ๋ฌ์ค๊ธฐ -> ์ ์์๋ 300๊ฐ
|
27 |
+
|
28 |
+
"""### 1-1. ๊ฒฐ๊ณผ ํ์ธ"""
|
29 |
+
|
30 |
+
Dataset
|
31 |
+
|
32 |
+
"""# 2. ๋ถํ์ํ ํน์ฑ ์ ์ธ"""
|
33 |
+
|
34 |
+
selected_features = ['image', 'answers', 'question']
|
35 |
+
selected_dataset = Dataset.from_dict({feature: Dataset[feature] for feature in selected_features})
|
36 |
+
|
37 |
+
"""### 2-1. ๊ฒฐ๊ณผ ํ์ธ"""
|
38 |
+
|
39 |
+
selected_dataset
|
40 |
+
|
41 |
+
"""# 3. ์ํํธ ์ธ์ฝ๋ฉ (๋ผ๋ฒจ ์ธ์ฝ๋ฉ)"""
|
42 |
+
|
43 |
+
# ๊ฐ ๋ต๋ณ๋ค์ ๊ณ ์ ํ ID๋ก ๋งคํํ๊ธฐ ์ํ ๋์
๋๋ฆฌ ์์ฑ
|
44 |
+
answers_to_id = defaultdict(lambda: len(answers_to_id))
|
45 |
+
selected_dataset = selected_dataset.map(lambda ex: {'answers': [answers_to_id[ans] for ans in ex['answers']],
|
46 |
+
'question': ex['question'],
|
47 |
+
'image': ex['image']})
|
48 |
+
|
49 |
+
# id๋ฅผ ๋ต๋ณ๋ค๋ก ๋งคํํ๋ ๋์
๋๋ฆฌ ์์ฑ
|
50 |
+
id_to_answers = {v: k for k, v in answers_to_id.items()}
|
51 |
+
|
52 |
+
# labels๋ก์ ๋งคํ์ ์ํ ๋์
๋๋ฆฌ ์์ฑ
|
53 |
+
id_to_labels = {k: ex['answers'] for k, ex in enumerate(selected_dataset)}
|
54 |
+
|
55 |
+
# ID๋ก ๋งคํ๋ 'answers'๋ฅผ labels๋ก ๋ณํ
|
56 |
+
selected_dataset = selected_dataset.map(lambda ex: {'answers': id_to_labels.get(ex['answers'][0]),
|
57 |
+
'question': ex['question'],
|
58 |
+
'image': ex['image']})
|
59 |
+
# ํธํํ์ํค๊ธฐ
|
60 |
+
flattened_features = []
|
61 |
+
|
62 |
+
# ๊ฐ ๋ฐ์ดํฐ ํธํํํ์ฌ flattened_features์ ์ถ๊ฐ
|
63 |
+
for ex in selected_dataset:
|
64 |
+
flattened_example = {
|
65 |
+
'answers': ex['answers'],
|
66 |
+
'question': ex['question'],
|
67 |
+
'image': ex['image'],
|
68 |
+
}
|
69 |
+
flattened_features.append(flattened_example)
|
70 |
+
|
71 |
+
"""### 3-1. ๊ฒฐ๊ณผ ํ์ธ"""
|
72 |
+
|
73 |
+
selected_dataset
|
74 |
+
|
75 |
+
"""# 4. ๋ชจ๋ธ ๊ฐ์ ธ์ค๊ธฐ"""
|
76 |
+
|
77 |
+
##๋ชจ๋ธ ๊ฐ์ ธ์ค๊ธฐ
|
78 |
+
from huggingface_hub import notebook_login
|
79 |
+
notebook_login('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')
|
80 |
+
|
81 |
+
# Use a pipeline as a high-level helper
|
82 |
+
from transformers import pipeline
|
83 |
+
pipe = pipeline("visual-question-answering", model="microsoft/git-base-vqav2")
|
84 |
+
|
85 |
+
# Load model directly
|
86 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
87 |
+
|
88 |
+
processor = AutoProcessor.from_pretrained("microsoft/git-base-vqav2")
|
89 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/git-base-vqav2")
|
90 |
+
# Push the model to your namespace with the name "my-finetuned-bert".
|
91 |
+
model.push_to_hub("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")
|
92 |
+
|
93 |
+
|
94 |
+
|
95 |
+
"""# 5. ๋ฐ์ดํฐ ์ ์ฒ๋ฆฌ"""
|
96 |
+
|
97 |
+
#BERT ํ ํฌ๋์ด์ ๋ถ๋ฌ์ค๊ธฐ
|
98 |
+
tokenizer = BertTokenizerFast.from_pretrained('bert-base-multilingual-cased')
|
99 |
+
|
100 |
+
# ๋ฐ์ดํฐ์
๋ถ๋ฌ์ค๊ธฐ
|
101 |
+
ok_vqa_dataset = load_dataset("Multimodal-Fatima/OK-VQA_train")
|
102 |
+
|
103 |
+
# ์ฒ์ 300๊ฐ์ ์์ ๋ง ์ ํํฉ๋๋ค
|
104 |
+
ok_vqa_dataset = ok_vqa_dataset['train'].select(range(300))
|
105 |
+
|
106 |
+
# ๋ฐ์ดํฐ ์ ์ฒ๋ฆฌ ํจ์ ์ ์
|
107 |
+
def preprocess_function(examples):
|
108 |
+
# ์ง๋ฌธ ํ ํฐํ
|
109 |
+
tokenized_inputs = tokenizer(examples['question'], truncation=True, padding=True)
|
110 |
+
|
111 |
+
# 'pixel_values'์ 'pixel_mask'๋ฅผ 300๊ฐ์ ์์๋ก ์ค์ ํฉ๋๋ค
|
112 |
+
examples['pixel_values'] = [(4, 3, 244, 244)] * 300 # ์ค์ ํฝ์
๊ฐ์ผ๋ก ๋์ฒดํด์ผ ํฉ๋๋ค
|
113 |
+
examples['pixel_mask'] = [1] * 300 # ์ค์ ํฝ์
๋ง์คํฌ ๊ฐ์ผ๋ก ๋์ฒดํด์ผ ํฉ๋๋ค
|
114 |
+
|
115 |
+
return {
|
116 |
+
'input_ids': tokenized_inputs['input_ids'],
|
117 |
+
'attention_mask': tokenized_inputs['attention_mask'],
|
118 |
+
'pixel_values': examples['pixel_values'],
|
119 |
+
'pixel_mask': examples['pixel_mask'],
|
120 |
+
'labels': [[label] for label in examples['answers'][:300]] # 'answers'๋ฅผ 2์ฐจ์ ๋ฐฐ์ด๋ก ํ์ ํฉ๋๋ค
|
121 |
+
}
|
122 |
+
|
123 |
+
# ๋ฐ์ดํฐ์
์ ์ ์ฒ๋ฆฌ๋ฅผ ์ ์ฉํฉ๋๋ค
|
124 |
+
ok_vqa_dataset = ok_vqa_dataset.map(preprocess_function, batched=True)
|
125 |
+
|
126 |
+
# 'ok_vqa_dataset'์ features๋ฅผ ์ ๋ฆฌํฉ๋๋ค
|
127 |
+
ok_vqa_dataset.set_format(type='torch', columns=['input_ids', 'attention_mask', 'pixel_values', 'pixel_mask', 'labels'])
|
128 |
+
|
129 |
+
|
130 |
+
#ok_vqa_dataset์์ ํ๊ธฐ๊ฐ ํ๋ค์ด์ ์๋ก์ด new_ok_vqa_dataset์ผ๋ก ์ ๋ ฌ
|
131 |
+
new_ok_vqa_dataset = Dataset.from_dict({
|
132 |
+
'input_ids': ok_vqa_dataset['input_ids'],
|
133 |
+
'attention_mask': ok_vqa_dataset['attention_mask'],
|
134 |
+
'pixel_values': ok_vqa_dataset['pixel_values'],
|
135 |
+
'pixel_mask': ok_vqa_dataset['pixel_mask'],
|
136 |
+
'labels': ok_vqa_dataset['labels']
|
137 |
+
})
|
138 |
+
|
139 |
+
"""### 5-1. ๊ฒฐ๊ณผ ํ์ธ"""
|
140 |
+
|
141 |
+
new_ok_vqa_dataset
|
142 |
+
|
143 |
+
"""# 6. ๋ฐฐ์น ์์ฑ ๋ฐ ๋ชจ๋ธ ์ด๊ธฐํ"""
|
144 |
+
|
145 |
+
from transformers import BertForSequenceClassification, BertTokenizer
|
146 |
+
|
147 |
+
# ๋ชจ๋ธ ์ด๊ธฐํ ๋ฐ ๊ฐ์ค์น ๋ถ๋ฌ์ค๊ธฐ
|
148 |
+
model_name = 'microsoft/git-base-vqav2' # ์ฌ์ฉํ ๋ชจ๋ธ์ ์ด๋ฆ
|
149 |
+
model = BertForSequenceClassification.from_pretrained(model_name)
|
150 |
+
|
151 |
+
# ์ถ๋ ฅ ๋ ์ด๋ธ ์ ์ค์
|
152 |
+
num_labels = len(id_to_labels) # ๋ ์ด๋ธ์ ์๋ ID๋ก๋ถํฐ ์์ฑ๋ labels์ ๊ธธ์ด์ ํด๋นํฉ๋๋ค
|
153 |
+
model.config.num_labels = num_labels # ๋ชจ๋ธ ์ค์ ์์ ์ถ๋ ฅ ๋ ์ด๋ธ ์๋ฅผ ์ค์ ํฉ๋๋ค
|
154 |
+
|
155 |
+
# ๋ ์ด๋ธ์ ID๋ก ๋ณํํ๋ ํจ์
|
156 |
+
id_to_labels = {}
|
157 |
+
|
158 |
+
for k, ex in enumerate(selected_dataset):
|
159 |
+
if ex['answers'] is not None and len(ex['answers']) > 0:
|
160 |
+
id_to_labels[k] = ex['answers'][0]
|
161 |
+
|
162 |
+
label_to_id = {v: k for k, v in id_to_labels.items()}
|
163 |
+
|
164 |
+
# ์์ธก๋ ID๋ฅผ ๋ ์ด๋ธ๋ก ๋ณํํ๋ ํจ์
|
165 |
+
def id_to_label_fn(pred_id):
|
166 |
+
return id_to_labels[pred_id]
|
167 |
+
|
168 |
+
# ์ค์ ๋ ์ด๋ธ์ ๋ชจ๋ธ ์ถ๋ ฅ ํฌ๋งท์ ๋ง๋ ID๋ก ๋ณํํ๋ ํจ์
|
169 |
+
def label_to_id_fn(label):
|
170 |
+
return label_to_id[label]
|
171 |
+
|
172 |
+
# ์์ธกํ ์
๋ ฅ ๋ฌธ์ฅ
|
173 |
+
input_text = "Your input text goes here..."
|
174 |
+
|
175 |
+
# ์
๋ ฅ ๋ฌธ์ฅ์ ํ ํฌ๋์ด์งํ์ฌ ๋ชจ๋ธ์ ์
๋ ฅํ ํํ๋ก ๋ณํ
|
176 |
+
tokenizer = BertTokenizer.from_pretrained(model_name)
|
177 |
+
encoded_input = tokenizer(input_text, return_tensors='pt')
|
178 |
+
|
179 |
+
# ๋ชจ๋ธ์ ์
๋ ฅ ๋ฐ์ดํฐ๋ฅผ ์ ๋ฌํ์ฌ ์์ธก ์ํ
|
180 |
+
with torch.no_grad():
|
181 |
+
outputs = model(**encoded_input)
|
182 |
+
|
183 |
+
# ์์ธก ๊ฒฐ๊ณผ์์ ๊ฐ์ฅ ๋์ ํ๋ฅ ์ ๊ฐ์ง ๋ ์ด๋ธ ID ๊ฐ์ ธ์ค๊ธฐ
|
184 |
+
predicted_label_id = torch.argmax(outputs.logits).item()
|
185 |
+
|
186 |
+
# ์์ธก๋ ๋ ์ด๋ธ ID๋ฅผ ๋ ์ด๋ธ๋ก ๋ณํํ์ฌ ์ถ๋ ฅ
|
187 |
+
predicted_label = id_to_label_fn(predicted_label_id)
|
188 |
+
|
189 |
+
"""### 6-1. ๊ฒฐ๊ณผ ํ์ธ"""
|
190 |
+
|
191 |
+
print("Predicted Label:", predicted_label)
|
192 |
+
|
193 |
+
"""# 7. Finetuning"""
|
194 |
+
|
195 |
+
# TrainingArguments ์ค์
|
196 |
+
training_args = TrainingArguments(
|
197 |
+
output_dir='./results', # ๋ชจ๋ธ ์์ํ ๋๋ ํ ๋ฆฌ
|
198 |
+
num_train_epochs=20, # ํ์ต ์ํญ ์
|
199 |
+
per_device_train_batch_size=4, # ๋ฐฐ์น ์ฌ์ด์ฆ
|
200 |
+
logging_steps=500, # ๋ก๊น
๊ฐ๊ฒฉ
|
201 |
+
)
|
202 |
+
|
203 |
+
# Trainer ๋ชจ๋ธ ์ด๊ธฐํ
|
204 |
+
trainer = Trainer(
|
205 |
+
model=model, # ํ์ต ๋ชจ๋ธ
|
206 |
+
args=training_args, # TrainingArguments
|
207 |
+
train_dataset=new_ok_vqa_dataset # ํ์ต ๋ฐ์ดํฐ์
|
208 |
+
)
|
209 |
+
|
210 |
+
"""7-1. ๊ฒฐ๊ณผ ํ์ธ"""
|
211 |
+
|