DEADLOCK007X commited on
Commit
eac8ce2
·
verified ·
1 Parent(s): 8b70345

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -8
app.py CHANGED
@@ -1,16 +1,19 @@
1
- import gradio as gr
2
  import json
3
- import torch
4
  from transformers import AutoTokenizer, AutoModelForCausalLM
5
 
6
  def load_model():
7
- # Change to the actual TinyLlama model identifier available on Hugging Face.
8
  model_name = "TheBloke/tiny-llama-7b"
9
- tokenizer = AutoTokenizer.from_pretrained(model_name)
10
- model = AutoModelForCausalLM.from_pretrained(model_name)
 
 
 
 
11
  return tokenizer, model
12
 
13
- # Load the model once when the app starts
14
  tokenizer, model = load_model()
15
 
16
  def evaluate_tinyllama(prompt):
@@ -18,6 +21,7 @@ def evaluate_tinyllama(prompt):
18
  outputs = model.generate(**inputs, max_new_tokens=150)
19
  response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
20
  try:
 
21
  result = json.loads(response_text.strip())
22
  except Exception as e:
23
  result = {"stars": 0, "feedback": "Evaluation failed. Unable to parse AI response."}
@@ -27,7 +31,7 @@ def evaluate_code(language, question, code):
27
  if not code.strip():
28
  return "Error: No code provided. Please enter your solution code."
29
 
30
- # Build a detailed prompt for the evaluator.
31
  prompt = f"""
32
  You are an expert code evaluator.
33
  Rate the following solution on a scale of 0-5 (0 = completely incorrect, 5 = excellent) and provide a concise feedback message.
@@ -38,7 +42,6 @@ Return ONLY valid JSON: {{"stars": number, "feedback": string}}.
38
  Do not include any extra text.
39
  """
40
  result = evaluate_tinyllama(prompt)
41
- # Format the output nicely
42
  return f"Stars: {result.get('stars', 0)}\nFeedback: {result.get('feedback', '')}"
43
 
44
  iface = gr.Interface(
 
1
+ import os
2
  import json
3
+ import gradio as gr
4
  from transformers import AutoTokenizer, AutoModelForCausalLM
5
 
6
  def load_model():
 
7
  model_name = "TheBloke/tiny-llama-7b"
8
+ token = os.environ.get("HF_TOKEN")
9
+ if not token:
10
+ raise ValueError("HF_TOKEN not found in environment variables.")
11
+ # Load the tokenizer and model using the provided token
12
+ tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=token)
13
+ model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=token)
14
  return tokenizer, model
15
 
16
+ # Load the model once at startup
17
  tokenizer, model = load_model()
18
 
19
  def evaluate_tinyllama(prompt):
 
21
  outputs = model.generate(**inputs, max_new_tokens=150)
22
  response_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
23
  try:
24
+ # Try to parse the model's output as JSON
25
  result = json.loads(response_text.strip())
26
  except Exception as e:
27
  result = {"stars": 0, "feedback": "Evaluation failed. Unable to parse AI response."}
 
31
  if not code.strip():
32
  return "Error: No code provided. Please enter your solution code."
33
 
34
+ # Build a detailed prompt for the AI evaluator.
35
  prompt = f"""
36
  You are an expert code evaluator.
37
  Rate the following solution on a scale of 0-5 (0 = completely incorrect, 5 = excellent) and provide a concise feedback message.
 
42
  Do not include any extra text.
43
  """
44
  result = evaluate_tinyllama(prompt)
 
45
  return f"Stars: {result.get('stars', 0)}\nFeedback: {result.get('feedback', '')}"
46
 
47
  iface = gr.Interface(