DEBO-V1 / modules /whisper_modules.py
Ridealist's picture
refactor: ๋ถˆํ•„์š”ํ•œ ์ฝ”๋“œ ์ œ๊ฑฐ, DB ๊ด€๋ จ ์ฝ”๋“œ ์ฃผ์„ ์ฒ˜๋ฆฌ
3708b8e
raw
history blame
2.5 kB
import openai
import os
import random
from langchain.prompts import PromptTemplate
from modules.gpt_modules import gpt_call
# from dotenv import dotenv_values
# config = dotenv_values(".env")
# if config:
# openai.organization = config.get('OPENAI_ORGANIZATION')
# openai.api_key = config.get('OPENAI_API_KEY')
# else:
# openai.organization = st.secrets['OPENAI_ORGANIZATION'] #config.get('OPENAI_ORGANIZATION')
# openai.api_key = st.secrets['OPENAI_API_KEY'] #config.get('OPENAI_API_KEY')
def debate_in_sound(api_key, audio):
os.rename(audio, audio + '.wav')
file = open(audio + '.wav', "rb")
openai.api_key = api_key
# user_words
user_prompt = openai.Audio.transcribe("whisper-1", file).text
print("**************************************")
print("user_audio transcription", user_prompt)
print("**************************************")
# Testing Prompt
debate_subject = "In 2050, AI robots are able to replicate the appearance, conversation, and reaction to emotions of human beings. However, their intelligence still does not allow them to sense emotions and feelings such as pain, happiness, joy, and etc."
debate_role = [
"pro side",
"con side",
]
user_debate_role = random.choice(debate_role)
bot_debate_role = "".join([role for role in debate_role if role != user_debate_role])
debate_preset = "\n".join([
"Debate Rules: ",
"1) This debate will be divided into pro and con",
"2) You must counter user's arguments",
"3) Answer logically with an introduction, body, and conclusion.\n", #add this one.
"User debate role: " + user_debate_role,
"Bot debate roles: " + bot_debate_role + "\n",
"Debate subject: " + debate_subject
])
prompt_template = PromptTemplate(
input_variables=["prompt"],
template="\n".join([
debate_preset, #persona
"User: {prompt}",
"Bot: "
])
)
bot_prompt = prompt_template.format(
prompt=user_prompt
)
response = gpt_call(api_key, bot_prompt)
return response
def whisper_transcribe(api_key, audio_file):
openai.api_key = api_key
audio_file= open("audio/audio.wav", "rb")
result = openai.Audio.transcribe("whisper-1", audio_file).text
audio_file.close()
return result