DEBO-V1 / modules /whisper_modules.py
Ridealist's picture
feat: implement env variables setting for building dependency in Hugging Face
6d7dbcd
raw
history blame
2.78 kB
import openai
import os
import random
import streamlit as st
from langchain.prompts import PromptTemplate
from modules.gpt_modules import gpt_call
from dotenv import dotenv_values
"""
apt-get update
apt-get install ffmpeg
"""
config = dotenv_values(".env")
if config:
openai.organization = config.get('OPENAI_ORGANIZATION')
openai.api_key = config.get('OPENAI_API_KEY')
else:
openai.organization = st.secrets['OPENAI_ORGANIZATION'] #config.get('OPENAI_ORGANIZATION')
openai.api_key = st.secrets['OPENAI_API_KEY'] #config.get('OPENAI_API_KEY')
def debate_in_sound(audio):
os.rename(audio, audio + '.wav')
file = open(audio + '.wav', "rb")
# user_words
user_prompt = openai.Audio.transcribe("whisper-1", file).text
print("**************************************")
print("user_audio transcription", user_prompt)
print("**************************************")
# 일단 테스트를 위해 고정함
debate_subject = "In 2050, AI robots are able to replicate the appearance, conversation, and reaction to emotions of human beings. However, their intelligence still does not allow them to sense emotions and feelings such as pain, happiness, joy, and etc."
debate_role = [
"pro side",
"con side",
]
user_debate_role = random.choice(debate_role)
bot_debate_role = "".join([role for role in debate_role if role != user_debate_role])
debate_preset = "\n".join([
"Debate Rules: ",
"1) This debate will be divided into pro and con",
"2) You must counter user's arguments",
"3) Answer logically with an introduction, body, and conclusion.\n", #add this one.
"User debate role: " + user_debate_role,
"Bot debate roles: " + bot_debate_role + "\n",
"Debate subject: " + debate_subject
])
prompt_template = PromptTemplate(
input_variables=["prompt"],
template="\n".join([
debate_preset, #persona
"User: {prompt}",
"Bot: "
])
)
bot_prompt = prompt_template.format(
prompt=user_prompt
)
response = gpt_call(bot_prompt)
return response
def whisper_transcribe(audio):
audio_file= open("audio/audio.wav", "rb")
result = openai.Audio.transcribe("whisper-1", audio_file).text
audio_file.close()
return result
# gr.Interface(
# title = 'Whisper Audio to Text with Speaker Recognition',
# fn=debate,
# inputs=[
# gr.inputs.Audio(source="microphone", type="filepath"),
# #gr.inputs.Number(default=2, label="Number of Speakers")
# ],
# outputs="text"
# ).launch()