Deep-Detect / app.py
nightfury's picture
Update app.py
6a29f7f verified
raw
history blame
8.49 kB
import gradio as gr
import torch
import torch.nn.functional as F
from facenet_pytorch import MTCNN, InceptionResnetV1
import os
import numpy as np
from PIL import Image
import zipfile
import cv2
from pytorch_grad_cam import GradCAM
from pytorch_grad_cam.utils.model_targets import ClassifierOutputTarget
from pytorch_grad_cam.utils.image import show_cam_on_image
#ai-pict-detect
from transformers import pipeline
#from typing import Iterable
#from gradio.themes.base import Base
#from gradio.themes.utils import colors, fonts, sizes
#import time
'''
class Seafoam(Base):
def __init__(
self,
*,
primary_hue: colors.Color | str = colors.emerald,
secondary_hue: colors.Color | str = colors.blue,
neutral_hue: colors.Color | str = colors.blue,
spacing_size: sizes.Size | str = sizes.spacing_md,
radius_size: sizes.Size | str = sizes.radius_md,
text_size: sizes.Size | str = sizes.text_lg,
font: fonts.Font
| str
| Iterable[fonts.Font | str] = (
fonts.GoogleFont("Quicksand"),
"ui-sans-serif",
"sans-serif",
),
font_mono: fonts.Font
| str
| Iterable[fonts.Font | str] = (
fonts.GoogleFont("IBM Plex Mono"),
"ui-monospace",
"monospace",
),
):
super().__init__(
primary_hue=primary_hue,
secondary_hue=secondary_hue,
neutral_hue=neutral_hue,
spacing_size=spacing_size,
radius_size=radius_size,
text_size=text_size,
font=font,
font_mono=font_mono,
)
super().set(
body_background_fill="repeating-linear-gradient(45deg, *primary_200, *primary_200 10px, *primary_50 10px, *primary_50 20px)",
body_background_fill_dark="repeating-linear-gradient(45deg, *primary_800, *primary_800 10px, *primary_900 10px, *primary_900 20px)",
button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)",
button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)",
button_primary_text_color="white",
button_primary_background_fill_dark="linear-gradient(90deg, *primary_600, *secondary_800)",
slider_color="*secondary_300",
slider_color_dark="*secondary_600",
block_title_text_weight="600",
block_border_width="3px",
block_shadow="*shadow_drop_lg",
button_shadow="*shadow_drop_lg",
button_large_padding="32px",
)
my_theme = Seafoam()
'''
#my_theme = gr.Theme.from_hub("gradio/seafoam")
my_theme = gr.themes.Monochrome()
#my_theme = gr.themes.Glass()
#my_theme = gr.themes.Default(primary_hue="red", secondary_hue="pink")
pipe = pipeline("image-classification", "nightfury/AI-picture-detector")
def image_classifier(image):
outputs = pipe(image)
results = {}
for result in outputs:
results[result['label']] = result['score']
return results
#ai-pict-detect
with zipfile.ZipFile("examples.zip","r") as zip_ref:
zip_ref.extractall(".")
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
'''cuda:0'''
mtcnn = MTCNN(
select_largest=False,
post_process=False,
device=DEVICE
).to(DEVICE).eval()
model = InceptionResnetV1(
pretrained="vggface2",
classify=True,
num_classes=1,
device=DEVICE
)
checkpoint = torch.load("resnetinceptionv1_epoch_32.pth", map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['model_state_dict'])
model.to(DEVICE)
model.eval()
EXAMPLES_FOLDER = 'examples'
examples_names = os.listdir(EXAMPLES_FOLDER)
examples = []
for example_name in examples_names:
example_path = os.path.join(EXAMPLES_FOLDER, example_name)
label = example_name.split('_')[0]
example = {
'path': example_path,
'label': label
}
examples.append(example)
np.random.shuffle(examples) # shuffle
def predict(input_image:Image.Image, true_label:str):
"""Predict the label of the input_image"""
face = mtcnn(input_image)
if face is None:
raise Exception('No face detected')
return "No Photoreal face detected"
face = face.unsqueeze(0) # add the batch dimension
face = F.interpolate(face, size=(256, 256), mode='bilinear', align_corners=False)
# convert the face into a numpy array to be able to plot it
prev_face = face.squeeze(0).permute(1, 2, 0).cpu().detach().int().numpy()
prev_face = prev_face.astype('uint8')
face = face.to(DEVICE)
face = face.to(torch.float32)
face = face / 255.0
face_image_to_plot = face.squeeze(0).permute(1, 2, 0).cpu().detach().int().numpy()
target_layers=[model.block8.branch1[-1]]
use_cuda = True if torch.cuda.is_available() else False
#print ("Cuda :: ", use_cuda)
cam = GradCAM(model=model, target_layers=target_layers)
#, use_cuda=use_cuda)
targets = [ClassifierOutputTarget(0)]
grayscale_cam = cam(input_tensor=face, targets=targets, eigen_smooth=True)
grayscale_cam = grayscale_cam[0, :]
visualization = show_cam_on_image(face_image_to_plot, grayscale_cam, use_rgb=True)
face_with_mask = cv2.addWeighted(prev_face, 1, visualization, 0.5, 0)
with torch.no_grad():
output = torch.sigmoid(model(face).squeeze(0))
prediction = "real" if output.item() < 0.5 else "fake"
real_prediction = 1 - output.item()
fake_prediction = output.item()
confidences = {
'real': real_prediction,
'fake': fake_prediction
}
return confidences, true_label, face_with_mask
title1 = "Deepfake Image Detection"
description1 = "~ AI - ML implementation for fake and real image detection..."
article1 = "<p style='text-align: center'>...</p>"
#interface1 = gr.Interface(fn=predict, inputs=gr.Image(type="pil"), outputs="label", theme = my_theme, title=title1, description=description1, article = article1)
interface1 = gr.Interface(
fn=predict,
inputs=[
gr.inputs.Image(label="Input Image", type="pil"),
"text"
],
outputs=[
gr.outputs.Label(label="Prediction Model - % of Fake or Real image detection"),
"text",
gr.outputs.Image(label="Face with Explainability", type="pil")
#ValueError: Invalid value for parameter `type`: auto. Please choose from one of: ['numpy', 'pil', 'filepath']
],
theme = my_theme, #gr.themes.Soft(),
title = title1,
description = description1,
article = article1
#examples=[[examples[i]["path"], examples[i]["label"]] for i in range(10)]
)
title2 = "AI Generated Image Detection"
description2 = "~ AI - ML implementation for AI image detection using older models such as VQGAN+CLIP."
article2 = """
NOTE:
- To detect pictures generated using older models such as VQGAN+CLIP, please use the updated version of this detector instead.
- In this model i'm using a ViT model to predict whether an artistic image was generated using AI or not.
- The training dataset didn't include any samples generated from Midjourney 5, SDXL, or DALLE-3. But was trained on outputs of their predecessors.
- Scope of this tool is 'artistic images'; that is to say, it is not a deepfake photo detector, and general computer imagery (webcams, screenshots, etc.) may throw it off.
- The potential indicator for this tool is to serve to detect whether an image was AI-generated or not.
- Images scoring as very probably artificial (e.g. 90% or higher) could be referred to a human expert for further investigation, if needed.
"""
interface2 = gr.Interface(fn=image_classifier, inputs=gr.Image(type="pil"), outputs="label", theme = my_theme, title=title2, description=description2, article = article2)
#demo.launch(show_api=False)
'''
interface2 = gr.Interface(
fn=image_classifier,
inputs=[
gr.inputs.Image(label="Input Image", type="pil"),
"text"
],
outputs=[
gr.outputs.Label(label="Is it Artificial or Human"),
"text",
#ValueError: Invalid value for parameter `type`: auto. Please choose from one of: ['numpy', 'pil', 'filepath']
],
theme = gr.themes.Soft(),
title = title1,
description = description1,
article = article1
)
'''
gr.TabbedInterface(
[interface1, interface2], ["Deepfake Image Detection", "AI Image Detection"]
).launch() #share=True)